23 resultados para Co-Fe thin films
Resumo:
This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by the photodissociation of Cr(CO)(6) in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio Of O-2 to Cr(CO)(6) and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both the crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm(-2) and a partial pressure ratio of about 1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The magnetic and electrical properties of Ni implanted single crystalline TiO2 rutile were studied for nominal implanted fluences between 0.5 x 10(17) cm(-2) and 2.0 x 10(17) cm(-2) with 150 keV energy, corresponding to maximum atomic concentrations between 9 at% and 27 at% at 65 nm depth, in order to study the formation of metallic oriented aggregates. The results indicate that the as implanted crystals exhibit superparamagnetic behavior for the two higher fluences, which is attributed to the formation of nanosized nickel clusters with an average size related with the implanted concentration, while only paramagnetic behavior is observed for the lowest fluence. Annealing at 1073 K induces the aggregation of the implanted nickel and enhances the magnetization in all samples. The associated anisotropic behavior indicates preferred orientations of the nickel aggregates in the rutile lattice consistent with Rutherford backscattering spectrometry-channelling results. Electrical conductivity displays anisotropic behavior but no magnetoresistive effects were detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Thin films consisting of 3 or 4 Sb and Ge alternating layers are irradiated with single nanosecond laser pulses (12 ns, 193 nm). Real time reflectivity (RTR) measurements are performed during irradiation, and Rutherford backscattering spectrometry (RBS) is used to obtain the concentration depth profiles before and after irradiation. Interdiffusion of the elements takes place at the layer interfaces within the liquid phase. The reflectivity transients allow to determine the laser energy thresholds both to induce and to saturate the process being both thresholds dependent on the multilayer configuration. It is found that the energy threshold to initiate the process is lower when Sb is at the surface while the saturation is reached at lower energy densities in those configurations with thinner layers.
Resumo:
This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm(2) and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.
Resumo:
Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Shear transparent cellulose free-standing thin films can develop iridescence similar to that found in petals of the tulip Queen of the Night. The iridescence of the film arises from the modulation of the surface into bands periodically spread perpendicular to the shear direction. Small amounts of nanocrystalline cellulose (NCC) rods in the precursor liquid-crystalline solutions do not disturb the optical properties of the solutions but enhance the mechanical characteristics of the films and affects their iridescence. Smaller bands periodicity, not affected by the NCC rods, slightly deviated from the shear direction is also observed. NCCs are crucial to tune and understand the film's surface features formation. Our findings could lead to new materials for application in soft reflective screens and devices.
Resumo:
Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 x 10(-1) Omega*cm and decreases down to 6.9 x 10(-3) Omega*cm as the annealing temperature is increased up to 500 degrees C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.
Resumo:
Supramolecular chirality was achieved in solutions and thin films of a calixarene-containing chiral aryleneethynylene copolymer. The observed chiroptical activity, which is primarily allied with the formation of aggregates of high molecular weight polymer chains, is the result of a combination of intrachain and interchain effects. The former arises by the adoption of an induced helix-sense by the polymer main-chain while the latter comes from the exciton coupling of aromatic backbone transitions. The co-existence of bulky bis-calixKlarene units and chiral side-chains on the polymer skeleton prevents efficient pi-stacking of neighbouring chains, keeping the chiral assembly highly emissive. In contrast, for a model polymer lacking calixarene moieties, the chiroptical activity is dominated by strong interchain exciton couplings as a result of more favourable packing of polymer chains, leading to a marked decrease of photoluminescence in the aggregate state. The enantiomeric recognition abilities of both polymers towards (R)- and (S)-alpha-methylbenzylamine were examined. It was found that a significant enantiodiscrimination is exhibited by the calixarene-based polymer in the aggregate state.