39 resultados para AIRBORNE ISOCYANATES
Ventilation influence in occupational exposure to fungi and volatile organic compounds: poultry case
Resumo:
Introduction - In poultry houses, large-scale production has led to increased bird densities within buildings. Such high densities of animals kept within confined spaces are a source of human health problems related to occupational organic dust exposure. This organic dust is composed of both non-viable particles and viable particulate matter (also called bioaerosols). Bioaerosols are comprised by airborne bacteria, fungi, viruses and their by-products, endotoxins and mycotoxins. Exposure to fungi in broiler houses may vary depending upon the applied ventilation system. Ventilation can be an important resource in order to reduce air contamination in these type of settings. Nevertheless, some concerns regarding costs, sensitivity of the animal species to temperature differences, and also the type of building used define which type of ventilation is used. Aim of the study - A descriptive study was developed in one poultry unit aiming to assess occupational fungal and volatile organic compounds (VOCs) exposure.
Resumo:
Aflatoxin B1 (AFB1) has been recognized to cause cancer in the humans liver. Epidemiological and laboratory evidence also point towards the respiratory system as target for carcinogenesis. Exposure occurs mainly through food chain but inhalation represent an additional route of exposure. Agricultural workers have the greatest risk of occupational exposure due to their exposition to airborne aflatoxin through inhalation of dust.
Resumo:
Although a great body of literature exists concerning the ingestion of food contaminated with aflatoxin, there are still few studies regarding mycotoxin inhalation in occupational settings. Since mycotoxins are relatively non-volatile, inhalation exposure is cause by inhalation of airborne fungal particulates or fungi-contaminated substrates that contain aflatoxin. We intend to know if there is occupational exposure to aflatoxin in Portuguese poultry and swine production. A total of 19 individuals (11 swine; 8 poultry) agreed and provided blood samples during the course of this investigation. Measurement of AFB1 was performed by ELISA. The samples were treated with pronase (Merck), wash in a Column C18 and purification was made with immunoaffinity columns (R.biopharma), specific for AFB1. It was applied statistical test (Mann-Whitney) to verified statistical difference in AFB1 results between the two settings. Results varied with concentrations from
Resumo:
A test chamber was projected and built (according to ISO 16000-9 Standard) to simulate atmospheric conditions experienced by rubber infill (when applied in synthetic turf pitches) and measure accurately the airborne emissions of pollutants such as dusts and volatile organic compounds (VOC), as well as pollutants present in leachates. It should be pointed out that standard ISO 16000-9 is only concerned with the determination of the emission of VOC from building products and furnishing (not specific of synthetic turf materials), whereas other standards are concerned with the emission of leachates only. This procedure is to be considered as a technical option to the lysimeter "global turf system evaluation" when the rubber infill alone is to be evaluated. The advantage of the proposed option considering this "test chamber" is its simplicity and economy. This test chamber is actually installed and being used for tests in LAIST.
Resumo:
Poor air quality in a pig-confinement building may potentially place farmers at higher health risk than other workers for exposure to airborne pollutants that may reach infectious levels. The aim of this study was to assess worker exposure to fungi in indoor environments in Portuguese swine buildings. Air samples from 7 swine farms were collected at a flow rate of 140 L/min, at 1 m height, onto malt extract agar supplemented with chloramphenicol (MEA). Surfaces samples of the same indoor sites were obtained by swabbing the surfaces. Samples from the floor covering were also collected from four of seven swine farms. All collected samples were incubated at 27°C for 5-7 days. After lab processing and incubation of obtained samples, quantitative colony-forming units (CFU)/m(3), CFU/cm(2), and CFU/g and qualitative results were determined with identification of isolated fungal species. Aspergillus versicolor was the most frequent species found in air (21%), followed by Scopulariopsis brevicaulis (17%) and Penicillium sp. (14%). Aspergillus versicolor was also the most frequent species noted on surfaces (26.6%), followed by Cladosporium sp. (22.4%) and Scopulariopsis brevicaulis (17.5%). Chrysosporium was the most frequently found genera in the new floor covering (38.5%), while Mucor was the most prevalent genera (25.1%) in used floor covering. Our findings corroborate a potential occupational health threat due to fungi exposure and suggest the need for a preventive strategy.
Resumo:
The objectives of this study were to (1) conduct an elemental characterization of airborne particles sampled in Cape Verde and (2) assess the influence of Sahara desert on local suspended particles. Particulate matter (PM10) was collected in Praia city (14°94'N; 23°49'W) with a low-volume sampler in order to characterize its chemical composition by k0-INAA. The filter samples were first weighed and subsequently irradiated at the Portuguese Research Reactor. Results showed that PM10 concentrations in Cape Verde markedly exceeded the health-based air quality standards defined by the European Union (EU), World Health Organization (WHO), and U.S. Environmental Protection Agency (EPA), in part due to the influence of Sahara dust transport. The PM10 composition was characterized essentially by high concentrations of elements originating from the soil (K, Sm, Co, Fe, Sc, Rb, Cr, Ce, and Ba) and sea (Na), and low concentrations of anthropogenic elements (As, Zn, and Sb). In addition, the high concentrations of PM measured in Cape Verde suggest that health of the population may be less affected compared with other sites where PM10 concentrations are lower but more enriched with toxic elements.
Resumo:
Aspergillus is among a growing list of allergens that aggravate asthmatic responses. Significant pulmonary pathology is associated with Aspergillus-induced allergic and asthmatic lung disease. Environments with high levels of exposure to fungi are found in animal production facilities such as for swine and poultry, and farmers working with these are at increased risk for occupational respiratory diseases. Seven Portuguese poultry and seven swine farms were analyzed in order to estimate the prevalence, amount, and distribution of Aspergillus species, as well as to determine the presence of clinical symptoms associated with asthma and other allergy diseases in these highly contaminated settings. From the collected fungal isolates (699), an average incidence of 22% Aspergillus was detected in poultry farms, while the prevalence at swine farms was 14%. The most frequently isolated Aspergillus species were A. versicolor, A. flavus, and A. fumigatus. In poultry farms, A. flavus presented the highest level of airborne spores (>2000 CFU/m3), whereas in swine farms the highest was A. versicolor, with an incidence fourfold greater higher than the other mentioned species. Eighty workers in these settings were analyzed, ranging in age from 17 to 93 yr. The potentially hazardous exposure of poultry workers to mold allergens using sensitization markers was evaluated. Although no significant positive association was found between fungal contamination and sensitization to fungal antigens, a high incidence of respiratory symptoms in professionals without asthma was observed, namely, wheezing associated with dyspnea (23.8%) and dyspnea after strenuous activities (12.3%), suggesting underdiagnosed respiratory disturbances. Further, 32.5% of all exposed workers noted an improvement of respiratory ability during resting and holidays. From all the analyzed workers, seven were previously diagnosed with asthma and four reported the first attack after the age of 40 yr, which may be associated with their occupational exposure. Some of the fungi, namely, the Aspergillus species detected in this study, are known to induce hypersensitivity reactions in humans. This study confirmed the presence and distribution of Aspergillus in Portuguese poultry and swine farms, suggesting a possible occupational health problem and raising the need for preventive and protective measures to apply to avoid exposure in both occupational settings.
Resumo:
Several studies have shown that human exposures to airbome dust and microorganisms, such as bacteria and fungi, can cause respiratory diseases. Agricultural workers have been found to be at high risk of exposures to airborne particles. From a human health perspective dust exposure in pig farming is the most important risk because of the large number of workers needed in pig production and the increasing number of working hours inside enclosed buildings. In the pig buildings, particulate matters like dust play a role in not only deteriorating indoor air quality but also can cause an adverse health effect on workers. Generally, dust is recognized to adsorb and transport odorous compounds and biological agents. The aim of this study was to determine particles contamination in 7 swine farms located in Lisbon district, Portugal.
Resumo:
Although the adverse health consequences of ingestion of food contaminated with aflatoxin B1 (AFB1) are known, relatively few studies are available on the adverse effects of exposure in occupational settings. Taking this into consideration, our study was developed aiming to elucidate the possible effects of occupational exposure to AFB1 in Portuguese swine production facilities using a specific biomarker to assess exposure to AFB1. In total, 28 workers participated in this study, providing blood samples, and a control group (n = 30) was composed of subjects without any type of agricultural activity. Fungal contamination was also studied by conventional methods through air, surfaces, and new and used floor coverage. Twenty-one workers (75%) showed detectable levels of AFB1 with values ranging from <1 ng/ml to 8.94 ng/ml and with a mean value of 1.91 ± 1.68 ng/ml. In the control group, the AFB1 values were all below 1 ng/ml. Twelve different Aspergillus species were identified. Aspergillus versicolor presented the highest airborne spore counts (3210 CFU/m3) and was also detected in higher values in surfaces (>300 CFU/cm2). Data indicate that exposure to AFB1 occurs in swine barns, and this site serves as a contamination source in an occupational setting.
Resumo:
Versão preprint.
Resumo:
Nanotechnology is an important emerging industry with a projected annual market of around one trillion dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions. Although there are advantages on the utilization of these nano-scale materials, questions related with its impact over the environment and human health must be addressed too, so that potential risks can be limited at early stages of development. At this time, occupational health risks associated with manufacturing and use of nanoparticles are not yet clearly understood. However, workers may be exposed to nanoparticles through inhalation at levels that can greatly exceed ambient concentrations. Current workplace exposure limits are based on particle mass, but this criteria could not be adequate in this case as nanoparticles are characterized by very large surface area, which has been pointed out as the distinctive characteristic that could even turn out an inert substance into another substance exhibiting very different interactions with biological fluids and cells. Therefore, it seems that, when assessing human exposure based on the mass concentration of particles, which is widely adopted for particles over 1 μm, would not work in this particular case. In fact, nanoparticles have far more surface area for the equivalent mass of larger particles, which increases the chance they may react with body tissues. Thus, it has been claimed that surface area should be used for nanoparticle exposure and dosing. As a result, assessing exposure based on the measurement of particle surface area is of increasing interest. It is well known that lung deposition is the most efficient way for airborne particles to enter the body and cause adverse health effects. If nanoparticles can deposit in the lung and remain there, have an active surface chemistry and interact with the body, then, there is potential for exposure. It was showed that surface area plays an important role in the toxicity of nanoparticles and this is the metric that best correlates with particle-induced adverse health effects. The potential for adverse health effects seems to be directly proportional to particle surface area. The objective of the study is to identify and validate methods and tools for measuring nanoparticles during production, manipulation and use of nanomaterials.
Resumo:
In 1987, the International Agency for Research on Cancer concluded that there was sufficient evidence for carcinogenicity of naturally occurring aflatoxins in humans. Regarding occupational exposure to this chemical agent, farmers and other agricultural workers present a higher risk due to airborne aflatoxin via inhalation of dust. This study was carried out in 7 swine farms located at the district of Lisbon, Portugal. Blood samples were collected from a total of 11 workers. In addition, a control group (n = 25) was included that conducted administrative tasks in an educational institution without any type of agricultural activity. Results obtained suggest that occupational exposure to AFB1 by inhalation occurs and represents an additional risk in this occupational setting that need to be recognized, assessed and, most important, prevented.
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
Chrysonilia sitophila is a common mould in cork industry and has been identified as a cause of IgE sensitization and occupational asthma. This fungal species have a fast growth rate that may inhibit others species’ growth causing underestimated data from characterization of occupational fungal exposure. Aiming to ascertain occupational exposure to fungi in cork industry, were analyzed papers from 2000 about the best air sampling method, to obtain quantification and identification of all airborne culturable fungi, besides the ones that have fast-growing rates. Impaction method don’t allows the collection of a representative air volume, because even with some media that restricts the growth of the colonies, in environments with higher fungal load, such as cork industry, the counting of the colonies is very difficult. Otherwise, impinger method permits the collection of a representative air volume, since we can make dilution of the collected volume. Besides culture methods that allows fungal identification trough macro- and micro-morphology, growth features, thermotolerance and ecological data, we can apply molecular biology with the impinger method, to detect the presence of non-viable particles and potential mycotoxin producers’ strains, and also to detect mycotoxins presence with ELISA or HPLC. Selection of the best air sampling method in each setting is crucial to achieve characterization of occupational exposure to fungi. Information about the prevalent fungal species in each setting and also the eventual fungal load it’s needed for a criterious selection.
Resumo:
O projeto “Avaliação da Exposição a Fungos e Partículas em Explorações Avícolas e Suinícolas” contemplou um elevado número de colheitas ambientais e biológicas e respectivo processamento laboratorial, sendo apenas possível a sua concretização graças ao financiamento disponibilizado pela Autoridade para as Condições de Trabalho. Foi realizado um estudo transversal para avaliar a contaminação causada por fungos e partículas em 7 explorações avícolas e 7 explorações suinícolas. No que concerne à monitorização biológica, foram medidos os parâmetros espirométricos, utilizando o espirómetro MK8 Microlab, avaliada a existência de sintomas clínicos associados com a asma e outras doenças alérgicas, através de questionário adaptado European Community Respiratory Health Survey e, ainda, avaliada a sensibilização aos agentes fúngicos (IgE). Foram ainda adicionados dois objetivos ao estudo, designadamente: aferir a existência de três espécies/estirpes potencialmente patogénicas/toxinogénicas com recurso à biologia molecular e avaliar a exposição dos trabalhadores à micotoxina aflatoxina B1 por recurso a indicador biológico de exposição. Foram colhidas 27 amostras de ar de 25 litros nas explorações avícolas e 56 de 50 litros nas explorações suinícolas através do método de impacto. As colheitas de ar e a medição da concentração das partículas foram realizadas no interior e no exterior dos pavilhões, sendo este último considerado como local de referência. Simultaneamente, a temperatura e a humidade relativa também foram registadas. As colheitas das superfícies foram realizadas através da técnica de zaragatoa, tendo sido utilizado um quadrado de metal inoxidável de 10 cm de lado, de acordo com a International Standard ISO 18593 – 2004. As zaragatoas obtidas (20 das explorações avícolas e 48 das explorações suinícolas) foram inoculadas em malte de extract agar (2%) com cloranfenicol (0,05 g/L). Além das colheitas de ar e de superfícies, foram também obtidas colheitas da cama das explorações avícolas (7 novas e 14 usadas) e da cobertura do pavimento das explorações suinícolas (3 novas e 4 usadas) e embaladas em sacos esterilizados. Cada amostra foi diluída e inoculada em placas contendo malte extract agar. Todas as amostras foram incubadas a 27,5ºC durante 5 a 7 dias e obtidos resultados quantitativos (UFC/m3; UFC/m2; UFC/g) e qualitativos com a identificação das espécies fúngicas. Para a aplicação dos métodos de biologia molecular foram realizadas colheitas de ar de 300 litros utilizando o método de impinger com a velocidade de recolha de 300 L/min. A identificação molecular de três espécies potencialmente patogénicas e/ou toxinogénicas (Aspergillus flavus, Aspergillus fumigatus e Stachybotrys chartarum) foram obtidas por PCR em tempo real (PCR TR) utilizando o Rotor-Gene 6000 qPCR Detection System. As medições de partículas foram realizadas por recurso a equipamento de leitura direta (modelo Lighthouse, 2016 IAQ). Este recurso permitiu medir a concentração (mg/m3) de partículas em 5 dimensões distintas (PM 0.5; PM 1.0; PM 2.5; PM 5.0; PM10). Nas explorações avícolas, 28 espécies/géneros de fungos foram isolados no ar, tendo Aspergillus versicolor sido a espécie mais frequente (20.9%), seguida por Scopulariopsis brevicaulis (17.0%) e Penicillium sp. (14.1%). Entre o género Aspergillus, Aspergillus flavus apresentou o maior número de esporos (>2000 UFC/m3). Em relação às superfícies, A. versicolor foi detetada em maior número (>3 × 10−2 UFC/m2). Na cama nova, Penicillium foi o género mais frequente (59,9%), seguido por Alternaria (17,8%), Cladosporium (7,1%) e Aspergillus (5,7%). Na cama usada, Penicillium sp. foi o mais frequente (42,3%), seguido por Scopulariopsis sp. (38,3%), Trichosporon sp. (8,8%) e Aspergillus sp. (5,5%). Em relação à contaminação por partículas, as partículas com maior dimensão foram detectadas em maiores concentrações, designadamente as PM5.0 (partículas com a dimensão de 5.0 bm ou menos) e PM10 (partículas com a dimensão de 10 bm ou menos). Neste setting a prevalência da alteração ventilatória obstrutiva foi superior nos indivíduos com maior tempo de exposição (31,7%) independentemente de serem fumadores (17,1%) ou não fumadores (14,6%). Relativamente à avaliação do IgE específico, foi apenas realizado em trabalhadores das explorações avícolas (14 mulheres e 33 homens), não tendo sido encontrada associação positiva (p<0.05%) entre a contaminação fúngica e a sensibilização a antigénios fúngicos. No caso das explorações suinícolas, Aspergillus versicolor foi a espécie mais frequente (20,9%), seguida por Scopulariopsis brevicaulis (17,0%) e Penicillium sp. (14,1%). No género Aspergillus, A. versicolor apresentou o maior isolamento no ar (>2000 UFC/m3) e a maior prevalência (41,9%), seguida por A. flavus e A. fumigatus (8,1%). Em relação às superfícies analisadas, A. versicolor foi detetada em maior número (>3 ×10−2 UFC/m2). No caso da cobertura do pavimento das explorações suinícolas, o género Thicoderma foi o mais frequente na cobertura nova (28,0%) seguida por A. versicolor e Acremonium sp. (14,0%). O género Mucor foi o mais frequente na cobertura usada (25,1%), seguido por Trichoderma sp. (18,3%) e Acremonium sp. (11,2%). Relativamente às partículas, foram evidenciados também valores mais elevados na dimensão PM5 e, predominantes nas PM10. Neste contexto, apenas 4 participantes (22,2%) apresentaram uma alteração ventilatória obstrutiva. Destes, as obstruções mais graves encontraram-se nos que também apresentavam maior tempo de exposição. A prevalência de asma na amostra de trabalhadores em estudo, pertencentes aos 2 contextos em estudo, foi de 8,75%, tendo-se verificado também uma prevalência elevada de sintomatologia respiratória em profissionais não asmáticos. Em relação à utilização complementar dos métodos convencionais e moleculares, é recomendável que a avaliação da contaminação fúngica nestes settings, e, consequentemente, a exposição profissional a fungos, seja suportada pelas duas metodologias e, ainda, que ocorre exposição ocupacional à micotoxina aflatoxina B1 em ambos os contextos profissionais. Face aos resultados obtidos, é importante salientar que os settings alvo de estudo carecem de uma intervenção integrada em Saúde Ocupacional no âmbito da vigilância ambiental e da vigilância da saúde, com o objetivo de diminuir a exposição aos dois factores de risco estudados (fungos e partículas).