22 resultados para 3-D trunk image analysis
Resumo:
The amount of fat is a component that complicates the clinical evaluation and the differential diagnostic between benign and malign lesions in the breast MRI examinations. To overcome this problem, an effective erasing of the fat signal over the images acquisition process, is essentials. This study aims to compare three fat suppression techniques (STIR, SPIR, SPAIR) in the MR images of the breast and to evaluate the best image quality regarding its clinical usefulness. To mimic breast women, a breast phantom was constructed. First the exterior contour and, in second time, its content which was selected based on 7 samples with different components. Finally it was undergone to a MRI breast protocol with the three different fat saturation techniques. The examinations were performed on a 1.5 T MRI system (Philips®). A group of 5 experts evaluated 9 sequences, 3 of each with fat suppression techniques, in which the frequency offset and TI (Inversion Time) were the variables changed. This qualitative image analysis was performed according 4 parameters (saturation uniformity, saturation efficacy, detail of the anatomical structures and differentiation between the fibroglandular and adipose tissue), using a five-point Likert scale. The statistics analysis showed that anyone of the fat suppression techniques demonstrated significant differences compared to the others with (p > 0.05) and regarding each parameter independently. By Fleiss’ kappa coefficient there was a good agreement among observers P(e) = 0.68. When comparing STIR, SPIR and SPAIR techniques it was confirmed that all of them have advantages in the study of the breast MRI. For the studied parameters, the results through the Friedman Test showed that there are similar advantages applying anyone of these techniques.
Resumo:
Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II
Resumo:
Introdução – Os estudos Gated – Single Photon Emission Computed Tomography (SPECT) são uma das técnicas de imagiologia cardíaca que mais evoluiu nas últimas décadas. Para a análise das imagens obtidas, a utilização de softwares de quantificação leva a um aumento da reprodutibilidade e exatidão das interpretações. O objetivo deste estudo consiste em avaliar, em estudos Gated-SPECT, a variabilidade intra e interoperador de parâmetros quantitativos de função e perfusão do miocárdio, obtidos com os softwares Quantitative Gated SPECT (QGS) e Quantitative Perfusion SPECT (QPS). Material e métodos – Recorreu-se a uma amostra não probabilística por conveniência de 52 pacientes, que realizaram estudos Gated-SPECT do miocárdio por razões clínicas e que integravam a base de dados da estação de processamento da Xeleris da ESTeSL. Os cinquenta e dois estudos foram divididos em dois grupos distintos: Grupo I (GI) de 17 pacientes com imagens com perfusão do miocárdio normal; Grupo II (GII) de 35 pacientes que apresentavam defeito de perfusão nas imagens Gated-SPECT. Todos os estudos foram processados 5 vezes por 4 operadores independentes (com experiência de 3 anos em Serviços de Medicina Nuclear com casuística média de 15 exames/semana de estudos Gated-SPECT). Para a avaliação da variabilidade intra e interoperador foi utilizado o teste estatístico de Friedman, considerando α=0,01. Resultados e discussão – Para todos os parâmetros avaliados, os respectivos valores de p não traduziram diferenças estatisticamente significativas (p>α). Assim, não foi verificada variabilidade intra ou interoperador significativa no processamento dos estudos Gated-SPECT do miocárdio. Conclusão – Os softwares QGS e QPS são reprodutíveis na quantificação dos parâmetros de função e perfusão avaliados, não existindo variabilidade introduzida pelo operador.
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (eta) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 degrees C of the measured brain phantom temperature when the brain phantom is lowered 10. C and then returned to the original temperature (37 degrees C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico
Resumo:
In machine learning and pattern recognition tasks, the use of feature discretization techniques may have several advantages. The discretized features may hold enough information for the learning task at hand, while ignoring minor fluctuations that are irrelevant or harmful for that task. The discretized features have more compact representations that may yield both better accuracy and lower training time, as compared to the use of the original features. However, in many cases, mainly with medium and high-dimensional data, the large number of features usually implies that there is some redundancy among them. Thus, we may further apply feature selection (FS) techniques on the discrete data, keeping the most relevant features, while discarding the irrelevant and redundant ones. In this paper, we propose relevance and redundancy criteria for supervised feature selection techniques on discrete data. These criteria are applied to the bin-class histograms of the discrete features. The experimental results, on public benchmark data, show that the proposed criteria can achieve better accuracy than widely used relevance and redundancy criteria, such as mutual information and the Fisher ratio.