639 resultados para ISSN-tunnus
Resumo:
The purpose of this paper is to analyse how educational policies about school violence are reinterpreted and implemented at school level and if this process contributes to a more pluralistic and democratic school. A research carried out in 3 clusters of schools showed that the diversity of understandings and strategies to face school violence, higher within the territories than between them, was associated to the school board's agendas and the legitimacy of the different actors to interpret and act within the national policies framework. There was a high consistency between violence management strategies and the ways schools faced social and cultural diversity. Those who favour more inclusive strategies to deal with violence tend to provide higher educational opportunities in schools, inversely, those who favour repressive strategies are more likely to support educational and social selective strategies, with less educational offer; less participation of teachers, students and parents in violence regulation.
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present results on the use of a semiconductor heterostructure based on a-SiC:H as a wavelength-division demultiplexer for the visible light spectrum. The proposed device is composed of two stacked p-i-n photodiodes with intrinsic absorber regions adjusted to short and long wavelength absorption and carrier collection. An optoelectronic characterisation of the device was performed in the visible spectrum. Demonstration of the device functionality for WDM applications was done with three different input channels covering the long, the medium and the short wavelengths in the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. An electrical model of the WDM device is proposed and supported by the solution of the respective circuit equations. Short range optical communications constitute the major application field however other applications are foreseen. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Red, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In general, modern networks are analysed by taking several Key Performance Indicators (KPIs) into account, their proper balance being required in order to guarantee a desired Quality of Service (QoS), particularly, cellular wireless heterogeneous networks. A model to integrate a set of KPIs into a single one is presented, by using a Cost Function that includes these KPIs, providing for each network node a single evaluation parameter as output, and reflecting network conditions and common radio resource management strategies performance. The proposed model enables the implementation of different network management policies, by manipulating KPIs according to users' or operators' perspectives, allowing for a better QoS. Results show that different policies can in fact be established, with a different impact on the network, e.g., with median values ranging by a factor higher than two.
Resumo:
Relevant past events can be remembered when visualizing related pictures. The main difficulty is how to find these photos in a large personal collection. Query definition and image annotation are key issues to overcome this problem. The former is relevant due to the diversity of the clues provided by our memory when recovering a past moment and the later because images need to be annotated with information regarding those clues to be retrieved. Consequently, tools to recover past memories should deal carefully with these two tasks. This paper describes a user interface designed to explore pictures from personal memories. Users can query the media collection in several ways and for this reason an iconic visual language to define queries is proposed. Automatic and semi-automatic annotation is also performed using the image content and the audio information obtained when users show their images to others. The paper also presents the user interface evaluation based on tests with 58 participants.
Resumo:
It is presented in this paper a study on the photo-electronic properties of multi layer a-Si: H/a-SiC: H p-i-n-i-p structures. This study is aimed to give an insight into the internal electrical characteristics of such a structure in thermal equilibrium, under applied Was and under different illumination condition. Taking advantage of this insight it is possible to establish a relation among-the electrical behavior of the structure the structure geometry (i.e. thickness of the light absorbing intrinsic layers and of the internal n-layer) and the composition of the layers (i.e. optical bandgap controlled through percentage of carbon dilution in the a-Si1-xCx: H layers). Showing an optical gain for low incident light power controllable by means of externally applied bias or structure composition, these structures are quite attractive for photo-sensing device applications, like color sensors and large area color image detector. An analysis based on numerical ASCA simulations is presented for describing the behavior of different configurations of the device and compared with experimental measurements (spectral response and current-voltage characteristic). (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We present measurements and numerical simulation of a-Si:H p-i-n detectors with a wide range of intrinsic layer thickness between 2 and 10 pm. Such a large active layer thickness is required in applications like elementary particle detectors or X-ray detectors. For large thickness and depending on the applied bias, we observe a sharp peak in the spectral response in the red region near 700 nm. Simulation results obtained with the program ASCA are in agreement with the measurement and permit the explanation of the experimental data. In thick samples holes recombine or are trapped before reaching the contacts, and the conduction mechanism is fully electron dominated. As a consequence, the peak position in the spectral response is located near the optical band gap of the a-Si:H i-layer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present results on the use of a multilayered a-SiC:H heterostructure as a wavelength-division demultiplexing device (WDM) for the visible light spectrum. The WDM device is a glass/ITO/a-SiC:H (p-i-n)/ a-SiC:H(-p) /Si:H(-i)/SiC:H (-n)/ITO heterostructure in which the generated photocurrent at different values of the applied bias can be assigned to the different optical signals. The device was characterized through spectral response measurements, under different electrical bias. Demonstration of the device functionality for WDM applications was done with three different input channels covering wavelengths within the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. The influence of the optical power density was also analysed. An electrical model, supported by a numerical simulation explains the device operation. Short range optical communications constitute the major application field, however other applications are also foreseen.
Resumo:
A key aspect of decision-making in a disaster response scenario is the capability to evaluate multiple and simultaneously perceived goals. Current competing approaches to build decision-making agents are either mental-state based as BDI, or founded on decision-theoretic models as MDP. The BDI chooses heuristically among several goals and the MDP searches for a policy to achieve a specific goal. In this paper we develop a preferences model to decide among multiple simultaneous goals. We propose a pattern, which follows a decision-theoretic approach, to evaluate the expected causal effects of the observable and non-observable aspects that inform each decision. We focus on yes-or-no (i.e., pursue or ignore a goal) decisions and illustrate the proposal using the RoboCupRescue simulation environment.
Resumo:
Low-density parity-check (LDPC) codes are nowadays one of the hottest topics in coding theory, notably due to their advantages in terms of bit error rate performance and low complexity. In order to exploit the potential of the Wyner-Ziv coding paradigm, practical distributed video coding (DVC) schemes should use powerful error correcting codes with near-capacity performance. In this paper, new ways to design LDPC codes for the DVC paradigm are proposed and studied. The new LDPC solutions rely on merging parity-check nodes, which corresponds to reduce the number of rows in the parity-check matrix. This allows to change gracefully the compression ratio of the source (DCT coefficient bitplane) according to the correlation between the original and the side information. The proposed LDPC codes reach a good performance for a wide range of source correlations and achieve a better RD performance when compared to the popular turbo codes.
Resumo:
A pi'n/pin a-SiC:H voltage and optical bias controlled device is presented and its behavior as image and color sensor, optical amplifier and demux device is discussed. The design and the light source properties are correlated with the sensor output characteristics. Different readout techniques are used. When a low power monochromatic scanner readout the generated carriers the transducer recognizes a color pattern projected on it acting as a direct color and image sensor. Scan speeds up to 10(4) lines per second are achieved without degradation in the resolution. If the photocurrent generated by different monochromatic pulsed channels is readout directly, the information is demultiplexed. Results show that it is possible to decode the information from three simultaneous color channels without bit errors at bit rates per channel higher than 4000 bps. Finally, when triggered by light of appropriated wavelength, it can amplify or suppress the generated photocurrent working as an optical amplifier (C) 2009 Published by Elsevier Ltd.
Resumo:
This paper presents a novel moving target indicator which is selective with respect to a direction of interest. Preliminary results indicate that the obtained selectivity may have high interest in civil traffic monitoring using single channel SAR data.