48 resultados para wind farms
Resumo:
This paper proposes the use of a Modular Marx Multilevel Converter, as a solution for energy integration between an offshore Wind Farm and the power grid network. The Marx modular multilevel converter is based on the Marx generator, and solves two typical problems in this type of multilevel topologies: modularity and dc capacitor voltage balancing. This paper details the strategy for dc capacitor voltage equalization. The dynamic models of the converter and power grid are presented in order to design the converter ac output voltages and the dc capacitor voltage controller. The average current control is presented and used for power flow control, harmonics and reactive power compensation. Simulation results are presented in order to show the effectiveness of the proposed (MC)-C-3 topology.
Resumo:
The importance of wind power energy for energy and environmental policies has been growing in past recent years. However, because of its random nature over time, the wind generation cannot be reliable dispatched and perfectly forecasted, becoming a challenge when integrating this production in power systems. In addition the wind energy has to cope with the diversity of production resulting from alternative wind power profiles located in different regions. In 2012, Portugal presented a cumulative installed capacity distributed over 223 wind farms [1]. In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.
Resumo:
Os Projectos de Investimento desempenham um importante papel no crescimento económico-social dos países, proporcionando emprego e desenvolvimento tecnológico. Na óptica dos projectos inovadores, concretamente no sector das energias renováveis, acarretam elevados investimentos, numa base temporal de longo prazo. Nestes casos as decisões estratégicas assumem um papel determinante, assim, o principal objectivo desta dissertação é a utilização das Opções Reais como métrica de avaliação dos projectos de investimento. A análise e avaliação dos projectos implica em si incerteza nas previsões, desta forma, as Opções Reais minimizam o risco associado à incerteza através da inclusão da flexibilidade no processo de avaliação. A primeira parte da dissertação consiste na contextualização energética mundial e nacional, ao nível da energia primária e das energias renováveis, com incidência na energia eólica. A segunda consiste na introdução teórica dos projectos de investimento e dos conceitos inerentes às Opções Financeiras e às Opções Reais. Por último, apresenta-se um caso de estudo de construção de três parques eólicos e as consequentes decisões de investimento concluindo que os modelos de avaliação das Opções Reais proporcionam alternativas e interdependência em investimentos futuros.
Resumo:
Dissertação para obtenção do grau de Engenharia Civil na Área de Especialização de Edificações
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.
Resumo:
As wind power generation undergoes rapid growth, lightning and overvoltage incidents involving wind power plants have come to be regarded as a serious problem. Firstly, lightning location systems are discussed, as well as important parameters regarding lightning protection. Also, this paper presents a case study, based on a wind turbine with an interconnecting transformer, for the study of adequate lightning and overvoltage protection measures. The electromagnetic transients circuit under study is described, and computational results are presented.
Resumo:
In this paper, the development of bidding strategies is investigated for a wind farm owner. The optimization model is characterized by making the analysis of scenarios. The proposed approach allows evaluating alternative production strategies in order to submit bids to the electricity market with the goal of maximizing profits. The problem is formulated as a linear programming problem. An application to a case study is presented
Resumo:
In this paper, two wind turbines equipped with a permanent magnet synchronous generator (PMSG) and respectively with a two-level or a multilevel converter are simulated in order to access the malfunction transient performance. Three different drive train mass models, respectively, one, two and three mass models, are considered in order to model the bending flexibility of the blades. Moreover, a fractional-order control strategy is studied comparatively to a classical integer-order control strategy. Computer simulations are carried out, and conclusions about the total harmonic distortion (THD) of the electric current injected into the electric grid are in favor of the fractional-order control strategy.
Resumo:
This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn.
Resumo:
A transient analysis for two full-power converter wind turbines equipped with a permanent magnet synchronous generator is studied in this article, taking into consideration, as a new contribution to earlier studies, a pitch control malfunction. The two full-power converters considered are, respectively, a two-level and a multi-level converter. Moreover, a novel control strategy based on fractional-order controllers for wind turbines is studied. Simulation results are presented; conclusions are in favor of the novel control strategy, improving the quality of the energy injected into the electric grid.
Resumo:
This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.
Resumo:
This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn.