10 resultados para conditional autoregressive models

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the performance of Portuguese equity funds investing in the domestic and in the European Union market, using several unconditional and conditional multi-factor models. In terms of overall performance, we find that National funds are neutral performers, while European Union funds under-perform the market significantly. These results do not seem to be a consequence of management fees. Overall, our findings are supportive of the robustness of conditional multi-factor models. In fact, Portuguese equity funds seem to be relatively more exposed to smallcaps and more value-oriented. Also, they present strong evidence of time-varying betas and, in the case of the European Union funds, of time-varying alphas too. Finally, in terms of market timing, our tests suggest that mutual fund managers in our sample do not exhibit any market timing abilities. Nevertheless, we find some evidence of timevarying conditional market timing abilities but only at the individual fund level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates the performance of a survivorship bias-free data set of Portuguese funds investing in Euro-denominated bonds by using conditional models that consider the public information available to investors when the returns are generated. We find that bond funds underperform the market significantly and by an economically relevant magnitude. This underperformance cannot be explained by the expenses they charge. Our findings support the use of conditional performance evaluation models, since we find strong evidence of both time-varying risk and performance, dependent on the slope of the term structure and the inverse relative wealth variables. We also show that survivorship bias has a significant impact on performance estimates. Furthermore, during the European debt crisis, bond fund managers performed significantly better than in non-crisis periods and were able to achieve neutral performance. This improved performance throughout the crisis seems to be related to changes in funds’ investment styles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate and compare the performance of Portuguese-based mutual funds that invest in the domestic market and in the European market using unconditional and conditional models of performance evaluation. Besides applying both partial and full conditional models, we use European information variables, instead of the most common local ones, and consider stochastically detrended conditional variables in order to avoid spurious regressions. The results suggest that mutual fund managers are not able to outperform the market, presenting negative or neutral performance. The incorporation of conditioning information in performance evaluation models is supported by our findings, as it improves the explanatory power of the models and there is evidence of both time-varying betas and alphas related to the public information variables. It is also shown that the number of lags to be used in the stochastic detrending procedure is a critical choice, as it will impact the significance of the conditioning information. In addition, we observe a distance effect, since managers who invest locally seem to outperform those who invest in the European market. However, after controlling for public information, this effect is slightly reduced. Furthermore, the results suggest that survivorship bias has a small impact on performance estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Interest in design and development of graphical user interface (GUIs) is growing in the last few years. However, correctness of GUI's code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper describes our approach to reverse engineering abstract GUI models directly from the Java/Swing code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Color model representation allows characterizing in a quantitative manner, any defined color spectrum of visible light, i.e. with a wavelength between 400nm and 700nm. To accomplish that, each model, or color space, is associated with a function that allows mapping the spectral power distribution of the visible electromagnetic radiation, in a space defined by a set of discrete values that quantify the color components composing the model. Some color spaces are sensitive to changes in lighting conditions. Others assure the preservation of certain chromatic features, remaining immune to these changes. Therefore, it becomes necessary to identify the strengths and weaknesses of each model in order to justify the adoption of color spaces in image processing and analysis techniques. This chapter will address the topic of digital imaging, main standards and formats. Next we will set the mathematical model of the image acquisition sensor response, which enables assessment of the various color spaces, with the aim of determining their invariance to illumination changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current software development relies increasingly on non-trivial coordination logic for com- bining autonomous services often running on di erent platforms. As a rule, however, in typical non-trivial software systems, such a coordination layer is strongly weaved within the application at source code level. Therefore, its precise identi cation becomes a major methodological (and technical) problem which cannot be overestimated along any program understanding or refactoring process. Open access to source code, as granted in OSS certi cation, provides an opportunity for the devel- opment of methods and technologies to extract, from source code, the relevant coordination information. This paper is a step in this direction, combining a number of program analysis techniques to automatically recover coordination information from legacy code. Such information is then expressed as a model in Orc, a general purpose orchestration language

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the performance and investment styles of internationally oriented Socially Responsible Investment (SRI)funds, domiciled in eight European markets, in comparison with characteristics-matched conventional funds. To the best of our knowledge, this is the first multi-country study, focused on international SRI funds (investing in Global and in European equities), to combine the matched-pairs approach with the use of robust conditional multi-factor performance evaluation models, which allow for both time-varying alphas and betas and also control for home biases and spurious regression biases.In general, the results show that differences in the performance of international SRI funds and their conventional peers are not statistically significant. Regarding investment styles, SRI and conventional funds exhibit similar factor exposures in most cases. In addition,conventional benchmarks present a higher explaining power of SRI fund returns than SRI benchmarks. Our results also show significant differences in the investment styles of SRI funds according to whether they use “best-in-class” screening strategies or not. When compared to SRI funds that employ simple negative and/or positive screens, SRI “best-in-class” funds present significantly lower exposures to small caps and momentum strategies and significantly higher exposures to local stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In face of the current economic and financial environment, predicting corporate bankruptcy is arguably a phenomenon of increasing interest to investors, creditors, borrowing firms, and governments alike. Within the strand of literature focused on bankruptcy forecasting we can find diverse types of research employing a wide variety of techniques, but only a few researchers have used survival analysis for the examination of this issue. We propose a model for the prediction of corporate bankruptcy based on survival analysis, a technique which stands on its own merits. In this research, the hazard rate is the probability of ‘‘bankruptcy’’ as of time t, conditional upon having survived until time t. Many hazard models are applied in a context where the running of time naturally affects the hazard rate. The model employed in this paper uses the time of survival or the hazard risk as dependent variable, considering the unsuccessful companies as censured observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.