11 resultados para Artificial potential fields
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Poly(hydroxybutyrate) (PHB) obtained from sugar cane was dissolved in a blend of chloroform and dimethylformamide (DMF) and electrospun at 40 ºC. By adding DMF to the solution, the electrospinning process for the PHB polymer becomes more stable, allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. The influence of processing parameters on fiber size and distribution was systematically studied. It was observed that an increase of tip inner diameter promotes a decrease of the fiber average size and a broader distribution. On the other hand, an increase of the electric field and flow rate produces an increase of fiber diameter until a maximum of ~2.0 m, but for electric fields higher than 1.5 kV.cm-1, a decrease of the fiber diameter was observed. Polymer crystalline phase seems to be independent of the processing conditions and a crystallinity degree of 53 % was found. Moreover, thermal degradation of the as-spun membrane occurs in single step degradation with activation energy of 91 kJ/mol. Furthermore, MC-3T3-E1 cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
Visions for Global Tourism Industry: Creating and Sustaining Competitive Strategies
Resumo:
This work reports on the influence of polarization and morphology of electroactive poly(vinylidene fluoride), PVDF, on the biological response of myoblast cells. Non-poled, ‘‘poled +’’ and “poled-“ -PVDF were prepared in the form of films. Further, random and aligned electrospun -PVDF fiber mats were also prepared. It is demonstrated that negatively charged surfaces improve cell adhesion and proliferation and that the directional growth of the myoblast cells can be achieved by the cell culture on oriented fibers. Therefore, the potential application of electroative materials for muscle regeneration is demonstrated.
Resumo:
Business social networking is a facilitator of several business activities, such as market studies, communication with clients, and identification of business partners. This paper traduces the results of a study undertaken with the purpose of getting to know how the potential of networking is perceived in the promotion of business by participants of the LinkedIn network, and presents two main contributions: (1) to disseminate within the business community which is the relevance given to social networking; and (2) which are the social networks best suitable to the promotion of business, to support the definition of strategies and approaches accordingly. The results confirm that LinkedIn is the most suitable network to answer the needs of those that look for professional contacts and for the promotion of business, while innovation is the most recognized factor in the promotion of business through social networking. This study contributes to a better understanding of the potential of different business social networking sites, to support organizations and professionals to align their strategies with the perceived potential of each network.
Resumo:
Fiber meshes of poly(hydroxybutyrate) (PHB) and poly(hydroxybutyrate)/ poly(ethylene oxide) (PHB/PEO) with different concentrations of chlorhexidine (CHX) were prepared by electrospinning, for assessment as a polymer based drug delivery system. The electrospun fibers were characterized at morphological, molecular and mechanical levels. The bactericidal potential of PHB and PHB/PEO electrospun fibers with and without CHX was investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by disk diffusion susceptibility tests. Electrospun fibers containing CHX exhibited bactericidal activity. PHB/PEO-1%CHX displayed higher CHX release levels and equivalent antibacterial activity when compared to PHB/PEO with 5 and 10 wt% CHX. Bactericidal performance of samples with 1 wt% CHX was assessed by Colony Forming Units (CFU), where a reduction of 100 % and 99.69 % against E. coli and S. aureus were achieved, respectively.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.