75 resultados para Política nuclear - Brasil
Resumo:
The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as "carbonated water". The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively.
Resumo:
This study investigated the separation of uranium and other elements in high concentrations from acid mine waters at Caldas Uranium Mining, in the southeast of Brazil, using nanofiltration membranes. Nanofiltrarion is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to removed dissolved species like uranium from acid mine water drainage was measured. Two composite aromatic polyamide commercially membranes of FilmTec/Dow were tested and it found that uranium rejections of greater than 90% and also showed potential for the separation of aluminum and manganese.
Resumo:
O objetivo deste trabalho foi avaliar morfologicamente as membranas de PES preparadas a partir do uso de misturas de polivinilpirrolidona (PVP K-30 e K-90), visando ajustar as condições de síntese para a obtenção de uma membrana isenta de macroporos.
Resumo:
O carbeto de boro tem efeito inibidor sobre a densificação da matriz de alumina. A maior densidade obtida foi de 80% da densidade teórica. A sinterização foi conduzida nas temperaturas de 1700, 1750 e 1800°C/1 hora em atmosfera de argônio. A caracterização microestrutural foi realizada por difração de raios X, MEV e MET. Foi observada a formação de uma fase identificada por MET como sendo A13B06.
Resumo:
No presente trabalho é apresentado um estudo do tempo de resistência de partículas em um 'spray dryer' com contato ar/'spray' predominantemente co-corrente e sistema rotativo de atomização de amostra. Propõe-se aplicação de uma técnica nuclear, utilizando como traçador o radioisótopo La140.
Otimização de um Decatador/Floculador de Placas Planas Verticais Empregando-se Traçadores Radiotivos
Resumo:
É apresentada metodologia para estudos e avaliações em tempo real, de unidades de estações de tratamento de esgoto (ETE) empregando-se traçadores radioativos. (...)
Resumo:
In industrial plants, oil and oil compounds are usually transported by closed pipelines with circular cross-section. The use of radiotracers in oil transport and processing industrial facilities allows calibrating flowmeters, measuring mean residence time in cracking columns, locate points of obstruction or leak in underground ducts, as well as investigating flow behavior or industrial processes such as in distillation towers. Inspection techniques using radiotracers are non-destructive, simple, economic and highly accurate. Among them, Total Count, which uses a small amount of radiotracer with known activity, is acknowledged as an absolute technique for flow rate measurement. A viscous fluid transport system, composed by four PVC pipelines with 13m length (12m horizontal and 1m vertical) and ½, ¾, 1 and 2-inch gauges, respectively, interconnected by maneuvering valves was designed and assembled in order to conduct the research. This system was used to simulate different flow conditions of petroleum compounds and for experimental studies of flow profile in the horizontal and upward directions. As 198Au presents a single photopeak (411,8 keV), it was the radioisotope chosen for oil labeling, in small amounts (6 ml) or around 200 kBq activity, and it was injected in the oil transport lines. A NaI scintillation detector 2”x 2”, with well-defined geometry, was used to measure total activity, determine the calibration factor F and, positioned after a homogenization distance and interconnected to a standardized electronic set of nuclear instrumentation modules (NIM), to detect the radioactive cloud.
Resumo:
This paper aims to determinate the water flowrate using Time Transient and Cross-Correlation techniques. The detection system uses two NaI(Tl) detectors adequately positioned on the outside of pipe and a gamma-ray source (82Br radiotracer). The water flowrate measurements using Time Transient and Cross-Correlation techniques were compared to invasive conventional measurements of the flowmeter previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowrate values were found to be less than 3% in relation to conventional ones.
Resumo:
The present work is concerned with the use of the cross correlation technique to measure delay time between two simulated signals displaced with respect to time, in order to develop a cross correlator system that will be used to measure the water and oil pipes flowrate in which the detection system is composed by two external low intensity radiation sources located along the tube and two NaI(Tl) gamma-ray detectors. The final purpose of the correlator system is to use the natural disturbances, as the turbulence in the own flow rather than to inject radioactive tracers to the fluid flow as usually is carried out. In the design of this correlator is evaluated the point-by-point calculation method for the cross correlation function in order to produce a system accurate and fast. This method is divided at the same time in three modes of operation: direct, relay and polarity.
Resumo:
The objective of this study was to assess worker exposure to mineral dust particles and a metabolic model, based on the model adopted by ICRP, was applied to assess human exposure to Ta, and predicted values of Ta concentrations in excreta. The occupational exposure to Th, U, Nb, and Ta bearing particles during routine tasks to obtain Fe-Nb alloys was estimated using air samplers and excreta samples. Ta concentrations in food samples and in drinking water were also determined. The results support that workers were occupationally exposed to Ta bearing particles, and also indicate that a source of Ta exposure for both workers and the control group was the ingestion of drinking water containing soluble compounds of Ta. Therefore, some Ta compounds should be considered soluble compounds in gastrointestinal tract. Consequently the metabolic model based on ICRP metabolic model and/or the transfer factor f1 for Ta should be reviewed and the solubility of Ta compounds in gastrointestinal should be determined.
Resumo:
This work presents a computational, called MOMENTS, code developed to be used in process control to determine a characteristic transfer function to industrial units when radiotracer techniques were been applied to study the unit´s performance. The methodology is based on the measuring the residence time distribution function (RTD) and calculate the first and second temporal moments of the tracer data obtained by two scintillators detectors NaI positioned to register a complete tracer movement inside the unit. Non linear regression technique has been used to fit various mathematical models and a statistical test was used to select the best result to the transfer function. Using the code MOMENTS, twelve different models can be used to fit a curve and calculate technical parameters to the unit.
Resumo:
The objective of the present work was to develop, separately, methodology for production of two gaseous tracers through the sodium iodide NaI marked with 123I. Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. These two forms of the gaseous iodine, the methyl iodide, CH3I, and molecular iodine, I2, are very unstable and volatile in the ambient temperature and presents different problems in clean-up and monitoring systems. The syntheses were processed with sodium iodide (NaI) 1M aqueous solution marked with 123I. The production of gas I2 was realized with in chlorine acid (HCl) and sodium iodate salt (NaIO3) and the CH3I was used, the salt of NaI and the reagent (CH3)2SO4. The production of gases was initially realized through in unit in glass with an inert material and the purpose was to study the kinetic of reaction and to determine the efficiency of production. The two synthesis occurs in the reaction bottle and after of produced, the gas is stored in the collect bottle that contains a starch solution for fixed the I2, and in syntheses of CH3I contains a silver nitrate solution for your fixation. To determine the efficiency of production of gases, analytic tests were realized, where the consumption of iodide ions of the bottle of reaction are measured. The optimization of production of the each gaseous tracer was studied varying parameter as: concentration of iodide, concentration of acid and temperature. After, the syntheses of the radiotracers were realized in the compact unit, having been used as main reagent the salt radiated of sodium iodide, Na123I. The transportation of elementary iodine and methyl iodine was studied by a scintillation detector NaI (2 x 2)” positioned in the reaction bottle.
Resumo:
This paper presents flow regimes identification methodology in multiphase system in annular, stratified and homogeneous oil-water-gas regimes. The principle is based on recognition of the pulse height distributions (PHD) from gamma-ray with supervised artificial neural network (ANN) systems. The detection geometry simulation comprises of two NaI(Tl) detectors and a dual-energy gamma-ray source. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be explored. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to acquire information about the different flow regimes. The PHDs obtained by the detectors were used as input to ANN. The data sets required for training and testing the ANN were generated by the MCNP-X code from static and ideal theoretical models of multiphase systems. The ANN correctly identified the three different flow regimes for all data set evaluated. The results presented show that PHDs examined by ANN may be applied in the successfully flow regime identification.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.
Resumo:
In this study, it was developed a methodology for the determination of the dispersion of a gaseous tracer in porous media using the radiotracer technique. In order to evaluate several porous media, a cylindrical filter was constructed in PVC and connected to a system with constant flow. Inside this unit silica crystals (16-20) mesh was used as porous media and CH3Br (Methyl Bromide) marked with 82Br was used as radiotracer. An instantaneous pulse of tracer was applied in the system entrance and registered by two NaI (3x3)” scintillation detectors located one before and the other after the filter. The curves produced by the radioactive cloud and recorded by the detector were analyzed statistically using the weighted moment method. The mathematical model one considered as great dispersion of tracer was used to evaluate the flow conditions inside the filter system. The results show us that the weight moment method associated with radiotracer techniques is useful to evaluated an industrial filter and allows to measure the residence time distribution, τ, and the axial dispersion, DAB, gas in a porous medium.