79 resultados para macro-fibre composites
em Biblioteca Digital da Produ
Resumo:
A finite element homogenization method for a shear actuated d(15) macro-fibre composite (MFC) made of seven layers (Kapton, acrylic, electrode, piezoceramic fibre and epoxy composite, electrode, acrylic, Kapton) is proposed and used for the characterization of its effective material properties. The methodology is first validated for the MFC active layer only, made of piezoceramic fibre and epoxy, through comparison with previously published analytical results. Then, the methodology is applied to the seven-layer MFC. It is shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. However, it is found that the piezoelectric charge constant d(15) is less affected by the softer layers required by the MFC packaging.
Resumo:
The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.
Resumo:
This paper evaluates the advantages of using hardwood short fibre pulp (eucalyptus) as alternative to softwood long fibre pulp (pinus) and polymer fibres, traditionally used in reinforcement of cement-based materials. The effects of cellulose fibre length on microstructure and on mechanical performance of fibre-cement composites were evaluated before and after accelerated ageing cycles. Hardwood pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to softwood long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the present research was to evaluate the effect of fibre morphology (e.g., length, width, fibrillation, broken ends, content of fines and number of fibres per gram) on flocculation and drainage properties of fibre-cement suspensions and on physical properties of the fibre-cement composites. Mechanical refining was used to change the morphological properties of Eucalyptus and Pinus pulps. Results show that the mechanical refining increased the size of the formed flocs and decreased the concentration of free small particles (with dimensions between 1 and 20 pm) as a consequence of the increased fibrillation and content of fines, which increased the capacity of the fibres to capture the mineral particles. High levels of refining were necessary for Pinus pulp to obtain cement retention values similar to those obtained by unrefined Eucalyptus pulp. This is due to the higher number of fibres per gram in Eucalyptus pulp than in Pinus pulp. Pulp refining improved the packing of the particles and, although decreased the drainage rate. it contributed to a less porous structure, which improved the microstructure of the composite. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To evaluate the bonding interface in experimentally weakened roots reinforced with adhesive restorative materials and quartz fibre posts, varying the light-exposure time of the composite resin used for root reinforcement. Methods: Twelve extracted human maxillary incisors teeth were used. The crowns were removed and the roots were endodontically treated. After post space preparation, the roots were assigned to four groups. The thickness of the root dentine was reduced and adhesively restored with composite resin light-activated through a translucent fibre post for either 40 s (group 1), 80 s (group 2) or 120 s (group 3). In the case of control (group 4), the roots were not weakened. One day after post cementation, the specimens were sectioned transversally in three slices and processed for scanning electron microscopic analysis to observe bonding interface formation, quality of the hybrid layer and density of resin tags using a four-step scale method. Results: Formation of a hybrid layer and resin tags were evident in all groups. There was no statistically (p > 0.05) significant difference between the regions analysed in each group (Friedman test) and between groups in each section depth (Kruskal-Wallis test). Furthermore, comparison of the flared/reinforced groups showed that the different time;; used for composite resin cure did not affect the results significantly (Kruskal-Wallis test, p = 0.2139). Conclusions: Different light-exposure times used for composite resin polymerisation during root canal reinforcement did not affect significantly the formation and quality of the dentine/adhesive/composite resin bonding interface. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the study was to evaluate the bond strength of fibre glass and carbon fibre posts in the root canal walls cemented with self-adhesive (RelyX-Unicem) and chemical (Cement-Post) resin cements. Forty maxillary canines were divided into four groups according to the cement and post used and submitted to the push-out test (0.5 mm min(-1)). The data were submitted to statistical analysis (2-way ANOVA, Bonferroni - P < 0.05) and fracture analysis by Scanning Electronic Microscopy. Fibre glass presented the best results when cemented with RelyX-Unicem and Cement-Post (P < 0.05). RelyX-Unicem presented the highest bond strength values for both posts (P < 0.05). Fracture analysis showed predominance of cohesive fracture of post for RelyX-Unicem and adhesive fracture between dentin/cement and mixed for Cement-Post. The bond strength values were significantly affected by the type of post and cement used and the highest values were found for fibre glass posts and RelyX-Unicem.
Resumo:
The objective of the present work was to evaluate the effects of 14 years of weathering exposition on the microstructure and mineral composition of cementitious roofing tiles, still in service, reinforced with fique fibres (Furcrae gender). The results show that tiles under weathering exposition presented higher water absorption and apparent void volume than tiles under laboratory exposition. The continuous hydration of cement and natural carbonation filled the smaller pores but contrarily the large pores remained in the porous fibre to matrix interface in the samples exposed to weathering. On the other hand, their microstructure presented lower air permeability than samples aged in the internal environment of the laboratory. Besides, in the weathering aged tiles takes place a more intensive hydration process as it was identified greater amount of hydrated phases than in the laboratory aged specimens. The present results contribute to understanding the consequences of tropical weathering on the fibre-cement degradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the present work is to evaluate the effects of the surface properties of unrefined eucalyptus pulp fibres concerning their performance in cement-based composites. The influence of the fibre surface on the microstructure of fibre-cement composites was evaluated after accelerated ageing cycles, which simulate natural weathering. The surface of unbleached pulp is a thin layer that is rich in cellulose, lignin, hemicelluloses, and extractives. Such a layer acts as a physical and chemical barrier to the penetration of low molecular components of cement. The unbleached fibres are less hydrophilic than the bleached ones. Bleaching removes the amorphous lignin and extractives from the surface and renders it more permeable to liquids. Atomic force microscopy (AFM) helps in understanding the fibre-cement interface. Bleaching improved the fibre- cement interfacial bonding, whereas fibres in the unbleached pulp were less susceptible to the re-precipitation of cement hydration products into the fibre cavities (lumens). Therefore, unbleached fibres can improve the long-term performance of the fibre-cement composite owing to their delayed mineralization.
Resumo:
The present work evaluated the effects of accelerated carbonation on mechanical and physical characteristics of cementitious roofing tiles reinforced with vegetable fibre. The maximum load and toughness of the tiles have increased approximately 25% and 80% respectively as a consequence of the accelerated carbonation. Water absorption and apparent porosity decreased with carbonation while bulk density increased as a clear indication of the densification of the composite. The improvement on the mechanical performance suggests that the fibres retained their tensile strength in the inorganic matrix. Results of specimens extracted from the tested tiles after approximately 480 days in laboratory environment and further aged indicate that soak and dry cycles promoted some leaching of hydration products and more voids and lower density when performed before carbonation. The results indicate the utilization of accelerated carbonation as an effective procedure to mitigate the degradation suffered by the cellulose fibres in the less aggressive medium. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.
Resumo:
OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.
Resumo:
Owing to improvements in its mechanical properties and to the availability of shade and translucence resources, resin composite has become one of the most widely used restorative materials in present day Dentistry. The aim of this study was to assess the relation between the surface hardness of seven different commercial brands of resin composites (Charisma, Fill Magic, Master Fill, Natural Look, Opallis, Tetric Ceram, and Z250) and the different degrees of translucence (translucid, enamel and dentin). Vickers microhardness testing revealed significant differences among the groups. Z250 was the commercial brand that showed the best performance in the hardness test. When comparing the three groups assessed within the same brand, only Master Fill and Fill Magic presented statistically significant differences among all of the different translucencies. Natural Look was the only one that showed no significant difference among any of the three groups. Charisma, Opallis, Tetric Ceram and Z250 showed significant differences among some of the tested groups. Based on the results found in this study, it was not possible to establish a relation between translucence and the microhardness of the resin composites assessed. Depending on the material assessed, however, translucence variation did affect the microhardness values of the resin composites.
Resumo:
The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.
Resumo:
The objective of this study was to evaluate the flexural strength (σf) and hardness (H) of direct and indirect composites, testing the hypotheses that direct resin composites produce higher σf and H values than indirect composites and that these properties are positively related. Ten bar-shaped specimens (25 mm x 2 mm x 2 mm) were fabricated for each direct [D250 - Filtek Z250 (3M-Espe) and D350 - Filtek Z350 (3M-Espe)] and indirect [ISin - Sinfony (3M-Espe) and IVM - VitaVM LC (Vita Zahnfabrik)] materials, according to the manufacturer's instructions and ISO4049 specifications. The σf was tested in three-point bending using a universal testing machine (EMIC DL 2000) at a crosshead speed of 0.5 mm/min (ISO4049). Knoop hardness (H) was measured on the specimens' fragments resultant from the σf test and calculated as H = 14.2P/l², where P is the applied load (0.1 kg; dwell time = 15 s) and l is the longest diagonal of the diamond shaped indent (ASTM E384). The data were statistically analyzed using Anova and Tukey tests (α = 0.05). The mean σf and standard deviation values (MPa) and statistical grouping were: D250 - 135.4 ± 17.6a; D350 - 123.7 ± 11.1b; ISin - 98.4 ± 6.4c; IVM - 73.1 ± 4.9d. The mean H and standard deviation values (kg/mm²) and statistical grouping were: D250 - 98.12 ± 1.8a; D350 - 86.5 ± 1.9b; ISin - 28.3 ± 0.9c; IVM - 30.8 ± 1.0c. The direct composite systems examined produce higher mean σf and H values than the indirect composites, and the mean values of these properties were positively correlated (r = 0.91), confirming the study hypotheses.