6 resultados para vitamin D
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Calcium and vitamin D are essential nutrients for bone metabolism Vitamin D can either be obtained from dietary sources or cutaneous synthesis. The study was conducted in subtropic weather; therefore, some might believe that the levels of solar radiation would be sufficient in this area. To evaluate calcium and vitamin D supplementation in postmenopausal women with osteoporosis living in a sunny country. A 3-month controlled clinical trial with 64 postmenopausal women with osteoporosis, mean age 62 +/- A 8 years. They were randomly assigned to either the supplement group, who received 1,200 mg of calcium carbonate and 400 IU (10 mu g) of vitamin D(3,) or the control group. Dietary intake assessment was performed, bone mineral density and body composition were measured, and biochemical markers of bone metabolism were analyzed. Considering all participants at baseline, serum vitamin D was under 75 nmol/l in 91.4% of the participants. The concentration of serum 25(OH)D increased significantly (p = 0.023) after 3 months of supplementation from 46.67 +/- A 13.97 to 59.47 +/- A 17.50 nmol/l. However, the dose given was limited in effect, and 86.2% of the supplement group did not reach optimal levels of 25(OH)D. Parathyroid hormone was elevated in 22.4% of the study group. After the intervention period, mean parathyroid hormone tended to decrease in the supplement group (p = 0.063). The dose given (400 IU/day) was not enough to achieve 25(OH)D concentration, considered optimal for bone health.
Resumo:
Background/Aims: Cutaneous sun exposure and dietary vitamin D intake are important determinants of vitamin D status. The objective of the present study was to evaluate the vitamin D status of a group of healthy adolescent students living in Brazil. Methods: One hundred and thirty-six adolescents, 64 boys and 72 girls, aged 16-20 years old, living in a rural town in the state of Sao Paulo, Brazil, participated in this study. Results: The mean dietary vitamin D intake was 140 (120-156) IU/day [3.5 (3.0-3.9) mu g/day]. Only 14.9% of the students met the daily adequate intake recommendation of vitamin D. Only 27.9% practice physical activity outdoors and 17.6% of the adolescents apply sunscreen daily. The mean 25(OH)D concentration was 73.0 (22.0) nmol/l [29.2 (8.8) ng/ml]. Vitamin D insufficiency was observed in 60% of adolescents. Conclusions: The present study suggests that even in a sunny climate like Brazil the prevalence of vitamin D insufficiency in adolescents is high. Most likely this is due to low intakes of vitamin D in this group. Due to the limited extent of natural dietary sources of vitamin D, a policy of vitamin D food fortification should be considered in the future, and in the meantime greater use of vitamin D supplements in this population group should be encouraged to provide the increased amounts of this essential nutrient for optimal health. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Bone loss associated with cyclosporin A (CsA) therapy can result in serious morbidity to patients. Intermittent administration of 1,25 Vitamin D and calcitonin reduces osteopenia in a murine model of postmenopausal osteoporosis. The purpose of this study was to evaluate the effects of this therapeutic approach on CsA-induced alveolar bone loss in rats. Forty male Wistar rats were allocated to four experimental groups according to the treatment received during 8 weeks: (1) CsA (10 mg/kg/day, s.c.); (2) 1,25 Vitamin D (2 mu g/kg, p.o.; in weeks 1, 3, 5, and 7) plus calcitonin (2 mu g/kg, i.p.; in weeks 2, 4, 6, and 8); (3) CsA concurrently with intermittent 1,25 Vitamin D and calcitonin administration; and (4) the control treatment group (vehicle). At the end of the 8-week treatment period, serum concentrations of bone-specific alkaline phosphatase, tartrate-resistant acid phosphatase (TRAP-5b), osteocalcin, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor alpha (TNF-alpha) were measured and an analysis of bone volume, bone surface, number of osteoblasts, and osteoclasts was performed. CsA administration resulted in significant alveolar bone resorption, as assessed by a lower bone volume and an increased number of osteoclasts, and increased serum bone-specific alkaline phosphatase, TRAP-5b, IL-1 beta, IL-6, and TNF-alpha concentrations. The intermittent administration of calcitriol and calcitonin prevented the CsA-induced osteopenic changes and the increased serum concentrations of TRAP-5b and inflammatory cytokines. Intermittent calcitriol/calcitonin therapy prevents CsA-induced alveolar bone loss in rats and normalizes the production of associated inflammatory mediators.
Resumo:
A randomized, placebo-controlled trial was conducted in overweight calcium stone-forming (CSF) patients, to evaluate the effect of calcium supplementation associated with a calorie-restricted diet on body weight (BW) and fat reduction and its potential changes upon serum and urinary parameters. Fifteen patients were placed on a hypocaloric diet for 3 months, supplemented with either calcium carbonate (CaCO(3), n = 8) or placebo (n = 7), 500 mg bid. Blood and 24-h urine samples were collected and body composition was assessed at baseline and after the intervention. At the end of the study, final BW was significantly lower vs baseline in both CaCO(3) (74 +/- A 14 vs. 80 +/- A 14 kg, P = 0.01) and placebo groups (80 +/- A 10 vs. 87 +/- A 9 kg, P = 0.02) but the mean percentage of loss of body weight and body fat did not differ between CaCO(3) and placebo (7.0 +/- A 2.0 vs. 8.0 +/- A 3.0%, P = 0.40 and 13.0 +/- A 7.0 vs. 13.0 +/- A 10.0%; P = 0.81, respectively). After CaCO(3) or placebo, no significant differences versus baseline were observed for urinary parameters in both CaCO(3) and placebo, except for a higher mean urinary citrate in placebo group. These data suggest that increasing calcium intake by calcium carbonate supplementation did not contribute to a further reduction of BW and fat in overweight CSF patients submitted to a hypocaloric diet nor altered urinary lithogenic parameters.
Resumo:
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Resumo:
Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for alpha-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (alpha, beta, gamma, and delta) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.