13 resultados para trypanocidal activity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis-[Ru(NO)(bpy)(2)L]X(n) , has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo. Experimental approach: NO donors were incubated with T. cruzi and their anti-T. cruzi activities evaluated as the percentage of lysed parasites compared to the negative control. In vivo, trypanocidal activity was evaluated by observing the levels of parasitaemia, survival rate and elimination of amastigotes in mouse myocardial tissue. The inhibition of GAPDH was monitored by the biochemical reduction of NAD+ to NADH. Key results: The NO donors cis-[Ru(NO)(bpy)(2)L]X(n) presented inhibitory effects on T. cruzi GAPDH (IC(50) ranging from 89 to 153 mu M). The crystal structure of the enzyme shows that the inhibitory mechanism is compatible with S-nitrosylation of the active cysteine (cys166) site. Compounds cis-[Ru(NO)(bpy)(2)imN](PF(6))(3) and cis-[Ru(NO)(bpy)(2)SO(3)]PF(6), at a dose of 385 nmol center dot kg-1, yielded survival rates of 80 and 60%, respectively, in infected mice, and eradicated any amastigotes from their myocardial tissue. Conclusions and implications: The ruthenium compounds exhibited potent in vitro and in vivo trypanocidal activities at doses up to 1000-fold lower than the clinical dose for benznidazole. Furthermore, one mechanism of action of these compounds is via the S-nitrosylation of Cys166 of T. cruzi GAPDH. Thus, these compounds show huge potential as candidates for the development of new drugs for the treatment of Chagas`s disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Guedes et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00576.x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trypanocidal activity of crude extracts and fractions from the leaves and stems of Peperomia obtusifolia (Piperaceae) was evaluated in vitro against the epimastigote forms of Trypanosoma cruzi. Bioactivity-guided fractionation of the most active extracts afforded seven known compounds, including three chromanes, two furofuran lignans and two flavone C-diglycosides. The most active compounds were the chromanes peperobtusin A and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid, with IC(50) values of 3.1 mu M (almost three times more active than the positive control benznidazole, IC(50) 10.4 mu M) and 27.0 mu M, respectively. Cytotoxicity assays using peritoneal murine macrophages indicated that the chromanes were not toxic at the level of the IC(50) for trypanocidal activity. This is the first report on the trypanocidal activity besides unspecific cytotoxicity of chromanes from Peperomia species. Additionally it represents the first time isolation of 3,4-dihydro5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid from P. obtusifolia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gaudichaudianic acid, a prenylated chromene isolated from Piper gaudichaudianum, has been described as a potent trypanocidal compound against the Y-strain of Trypanosoma cruzi. We herein describe its isolation as a racemic mixture followed by enantiomeric resolution using chiral HPLC and determination of the absolute configuration of the enantiomers as (+)-S and (-)-R by means of a combination of electronic and vibrational circular dichroism using density functional theory calculations. Investigation of the EtOAc extract of the roots, stems, and leaves from both adult specimens and seedlings of P. gaudichaudianum revealed that gaudichaudianic acid is biosynthesized as a racemic mixture from the seedling stage onward. Moreover, gaudichaudianic acid was found exclusively in the roots of seedlings, while it is present in all organs of the adult plant. Trypanocidal assays indicated that the (+)-enantiomer was more active than its antipode. Interestingly, mixtures of enantiomers stowed a synergistic effect, with the racemic mixture being the most active.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 mu M, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Five tetrahydrofuran lignans and two known flavones were isolated from the aerial parts of Peperomia blanda. The structures of the isolated lignans were elucidated by interpretation of their spectroscopic data, including by gHMQC and gHMBC. The relative and absolute configurations of the isolates were determined from NOESY interactions and optical properties, respectively. Four of the lignans were diastercomeric whilst one was of mixed biosynthetic origin. All but one of the lignans exhibited high in vitro trypanocidal activity when assayed against epimastigotes of Trypanosoma cruzi strain Y. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study describes the antichagasic potential of five compounds isolated from leaves of Piper crassinervium (Piperaceae). Two prenylated benzoic acid derivatives, one prenylated hydroquinone and two flavanones, were evaluated. The in vitro trypanocidal activity was determined against epimastigote forms of Trypanosoma cruzi (Y strain), the etiologic agent of Chagas disease. The most active compound was the prenylated hydroquinone [1,4-dihydroxy-2-(3(0),7(0)-dimethyl-1(0)-oxo-2(0)-E,6(0)-octadienyl)benzene] with an IC(50) value of 6.10 g mL(-1), which was in the same order of activity if compared with the positive control benznidazole (IC(50) = 1.60 mu g mL(-1)). This is the first report of trypanocidal activity for prenylated hydroquinone and benzoic acid derivatives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3 ``-methylbut-2 ``-enyl)-2-(4`-methylpent-3`-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC50 of 2.82 mu M. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anchoring of K[Ru-III(edta)(Cl)] on poly(amidoamine) dendrimers (PAMAM of three generations G(x)/Ru (x = 0, 2 and 3)) through a peptide type bond yielded the aquo species, [Ru-III(edta)(H2O)] on dendrimer surface, and upon NO exposure, yielded their nitrosyl analogues, Gx/RuNO. Characterization of these compounds by elemental analysis, and a UV-vis, IR and C-13 NMR spectroscopies indicated the immobilization of 4,12 and 29 molecules of [Ru-III(edta)(H2O)](-) or of the nitrosyl complex [Ru(II)edta)NO] on the dendrimer surface for G(X) = 0, 2 and 3, respectively. For each complex the electrochemical spectrum presented only one redox process with redox potential values of -0.20 and -0.32 V(vs SCE) attributed to the Ru/Run and NO+/NO0 couples in G(x)/Ru and G./RuNO, respectively. The one-electron reduction of Gx/RuNO` generates Gx/RuNOo, which undergoes aquation with a k(-NO) of 2.1 +/- 0.7 x 10(-3) s(-1) (pH 1.0, mu = 0.2 mol/L, CF3COOH/NaCF3COO, 25 degrees C). The Gx/RuNO species induced a relaxing effect in aortic rings denuded of endothelium and exhibited in vitro assay trypanocidal activity. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ruthenium NO donors of the group trans-[Ru(NO)(NH(3))(4)L](n+), where the ligand (L) is N-heterocyclic H(2)O, SO(3)(2 -), or triethyl phosphite, are able to lyse Trypanosoma cruzi in vitro and in vivo. Using half-maximal (50%) inhibitory concentrations against bloodstream trypomastigotes (IC(50)(try)) and cytotoxicity data on mammalian V-79 cells (IC(50)(V79)), the in vitro therapeutic indices (TIs) (IC(50)(V79)/IC(50)(try)) for these compounds were calculated. Compounds that exhibited an in vitro TI of >= 10 and trypanocidal activity against both epimastigotes and trypomastigotes with an IC(50)(try/epi) of <= 100 mu M were assayed in a mouse model for acute Chagas` disease, using two different routes (intraperitoneal and oral) for drug administration. A dose-effect relationship was observed, and from that, the ideal dose of 400 nmol/kg of body weight for both trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) (isn, isonicotinamide) and trans-[Ru(NO)(NH3) 4imN](BF4) 3 (imN, imidazole) and median (50%) effective doses (ED50) of 86 and 190 nmol/kg, respectively, were then calculated. Since the 50% lethal doses (LD(50)) for both compounds are higher than 125 mu mol/kg, the in vivo TIs (LD(50)/ED(50)) of the compounds are 1,453 for trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and 658 for trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3). Although these compounds exhibit a marked trypanocidal activity and are able to react with cysteine, they exhibit very low activity in T. cruzi -glycosomal glyceraldehyde-3-phosphate dehydrogenase tests, suggesting that this enzyme is not their target. The trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compounds are able to eliminate amastigote nests in myocardium tissue at 400-nmol/kg doses and ensure the survival of all infected mice, thus opening a novel set of therapies to try against trypanosomatids.