14 resultados para titanium-dioxide

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of anatase and rutile domains on nanocrystalline films of P25 TiO(2), as well as the distinct coordination modes of carboxylates on those phases, were revealed by confocal Raman microscopy, a technique that showed to be suitable for imaging the chemical morphology down to submicrometric size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide was obtained by hydrolysis of the corresponding ethoxide, followed by washing, drying, and calcination at 80, 160, 240, 320, 400, and 700 C, respectively. The following surface properties of the solids obtained were determined as a function of the calcinations temperature: T(Calcn); area by the BET method; BrOnsted acidity by titration with sodium hydroxide; empirical polarity, ET(30); Lewis acidity, alpha(Surf); Lewis basicity, beta(Surf); and dipolarity/polarizability pi*(Sturf), by use of solvatochromic indicators. Except for le surf whose value increased slightly, heating the samples resulted in a decrease of all of the above-mentioned surface properties, due to the decrease of surface hydroxyl groups. This conclusion has been corroborated by FTIR. Values of E(T)(30), alpha(Surf), and pi*(Surf) are higher than those of water and alcohols; the BrOnsted and Lewis acidities of the samples correlate linearly. The advantages of using solvatochromic indicators to probe the surface properties and relevance of the results to the applications of TiO(2) are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shelf life of pasteurized milk in Brazil ranges from 3 to 8 d, mainly due to poor cold chain conditions that prevail throughout the country and subject the product to repeated and/or severe temperature abuse. This study evaluated the influence of storage temperature on the microbiological stability of homogenized whole pasteurized milk (75 degrees C/15 s) packaged in high-density polyethylene (HDPE) bottle and low-density polyethylene (LDPE) pouch, both monolayer materials pigmented with titanium dioxide (TiO(2)). The storage temperatures investigated were 2, 4, 9, 14, and 16 degrees C. Microbiological evaluation was based on mesophilic and psychrotrophic counts with 7 log CFU/mL and 6 log CFU/mL, respectively, set as upper limits of acceptability for maintaining the quality of milk. The microbiological stability for pasteurized milk packaged in HDPE bottle and stored at 2, 4, 9, 14, and 16 degrees C was estimated at 43, 36, 8, 5, and 3 d, respectively. For milk samples packaged in LDPE pouch, shelf life was estimated at 37, 35, 7, 3, and 2 d, respectively. The determination of Q(10) and z values demonstrated that storage temperature has a greater influence on microbiological shelf life of pasteurized milk packaged in LDPE pouch compared to HDPE bottle. Based on the results of this study, HDPE bottle was better for storing pasteurized milk as compared to LDPE pouch.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 mu m) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 mu m), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 mu M did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium dioxide has been extensively used in photocatalysis and dye-sensitized solar cells, where control of the anatase-to-rutile phase transformation may allow the realization of more efficient devices exploiting the synergic effects at anatase/rutile interfaces. Thus, a systematic study showing the proof of concept of a dye-induced morphological transition and an anatase-to-rutile transition based on visible laser (532 nm) and nano/micro patterning of mesoporous anatase (Degussa P25 TiO(2)) films is described for the first time using a confocal Raman microscope. At low laser intensities, only the bleaching of the adsorbed N3 dye was observed. However, high enough temperatures to promote melting/densification processes and create a deep hole at the focus and an extensive phase transformation in the surrounding material were achieved using Is laser pulses of 25-41 mW/cm(2), in resonance with the MLCT band. The dye was shown to play a key role, being responsible for the absorption and efficient conversion of the laser light into heat. As a matter of fact, the dye is photothermally decomposed to amorphous carbon or to gaseous species (CO(x), NO(x), and H(2)O) under a N(2) or O(2) atmosphere, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocomposites of carbon nanotubes and titanium dioxide (TiO(2)) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO(2). In this work, we show evidence of the attachment of nanostructured TiO(2) to multiwalled carbon nanotubes(MWNTs) by Raman spectroscopy. The nanostructured TiO(2) was characterized by both full-width at half-maximum (FWHM) and the Raman shift of the TiO(2) band at ca 144 cm(-1), whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO(2) shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO(2). To complement the nanocomposite characterization, scanning electronic microscopy and X-ray diffraction were performed. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photocatalytic degradation of Janus Green B azo dye over silver modified titanium dioxide films was investigated by surface-enhanced Raman spectroscopy (SERS). An optimized SERS-active substrate was employed to study the photodegradation reaction of Janus Green B. Considering that photocatalytic degradation processes of organic molecules adsorbed on TiO2 might involve either their oxidation or reduction reaction, the vibrational spectroelectrochemical study of the dye was also performed, in order to clarify the transformations involved in initial steps of its photochemical decomposition. In order to understand the changes in Raman spectra of Janus Green B after photodegradation and/or electrochemical processes, a vibrational assignment of the main Raman active modes of the dye was carried out, based on a detailed resonance Raman profile. Products formed by electrochemical and photochemical degradation processes were compared. The obtained results revealed that the first steps of the degradation process of Janus Green B involve a reductive mechanism. (C) 2007 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium dioxide with and without the addition of neodymium ions was prepared using sol-gel and precipitation methods. The resulting catalysts were characterized by thermal analysis, X-ray diffraction and BET specific surface area. Neodymium addition exerted a remarkable influence on the phase transition temperature and the surface properties of the TiO(2) matrix. TiO(2) samples synthesized by precipitation exhibit an exothermic event related from the amorphous to anatase phase transition at 510 degrees C, whereas in Nd-doped TiO(2) this transition occurred at 527 degrees C. A similar effect was observed in samples obtained using sol-gel method. The photocatalytic reactivity of the catalysts was evaluated by photodegradation of Remazol Black B (RB) under ultraviolet irradiation. Nd-doped TiO(2) showed enhanced photodegradation ability compared to undoped TiO(2) samples, independent of the method of synthesis. In samples obtained by sol-gel, RB decoloration was enhanced by 16% for TiO(2) doped with 0.5% neodymium ions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanosecond laser flash photolysis has been used to investigate injection and back electron transfer from the complex [(Ru-(bpy)(2)(4,4`-(PO(3)H(2))(2)bpy)](2+) surface-bound to TiO(2) (TiO(2)-Ru(II)). The measurements were conducted under conditions appropriate for water oxidation catalysis by known single-site water oxidation catalysts. Systematic variations in average lifetimes for back electron transfer, - were observed with changes in pH, surface coverage, incident excitation intensity, and applied bias. The results were qualitatively consistent with a model involving rate-limiting thermal activation of injected electrons from trap sites to the conduction band or shallow trap sites followed by site-to-site hopping and interfacial electron transfer, TiO(2)(e(-))-Ru(3+) -> TiO(2)-Ru(2+). The appearance of pH-dependent decreases in the efficiency of formation of TiO(2)-Ru(3+) and in incident-photon-to-current efficiencies with the added reductive scavenger hydroquinone point to pH-dependent back electron transfer processes on both the sub-nanosecond and millisecond-microsecond time scales, which could be significant in limiting long-term storage of multiple redox equivalents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid photocatalysts based on an adsorbent SiMgOx and a photocatalyst TiO(2) were developed in a plate shape. The ceramic surface was coated with TiO(2) by the slip-casting technique. The effect of the support in the photocatalytic degradation of trichloroethylene (TCE) was analyzed by modifying TiO(2) loading and the layer thickness. Photocatalysts were characterised by N(2) adsorption-desorption, mercury intrusion porosimetry, SEM, UV-vis spectroscopy and XRD. A direct relationship between the TiO(2) content and the photocatalytic activity was observed up to three layers of TiO(2) (0.66 wt.%). Our results indicate that intermediate species generated on the TiO(2) layer can migrate through relatively long distances to react with the OH(-) surface groups of the support. By increasing the TiO(2) loading of the photocatalyst two effects were observed: trichloroethylene conversion is enhanced, while the efficiency of the oxidation process is decreased at expenses of increasing the selectivity to COCl(2) and dichloroacetylchloride (DCAC). The results are discussed in terms of the layer thickness, TiO(2) amount, TCE conversion and CO(2), and COCl(2) selectivity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The degradation of phenol by a hybrid process (activated sludge + photocatalysis) in a high salinity medium (50 g L-1 of chloride) has been investigated. The sludge used from a municipal wastewater facility was adapted to the high salt concentrations prior to use. The photocatalytic conditions were optimized by means of a factorial experimental design. TiO2 P25 from Degussa was used as the photocatalyst. The initial phenol concentration was approximately 200 mg L-1 and complete removal of phenol and a mineralization degree above 98% were achieved within 25 h of treatment (24 h of biological treatment and I h of photocatalysis). From HPLC analyses, five hydroxylated intermediates formed during oxidation have been identified. The main ones were catechol and hydroquinone, followed by 1,2,4-benzenetriol, 2-hydroxy- 1,4-benzoquinone, and pyrogallol, in this order. No formation of organochlorine compounds was observed. Therefore, the proposed hybrid process showed itself to be suited to treat phenol in the presence of high contents of salt. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photocatalytic degradation of phenol in aqueous suspensions of TiO(2) under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen- Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.