13 resultados para titanium corrosion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The biocompatibility of commercially pure (cp) titanium stems from its chemical stability within an organism, due to a fine film of impermeable titanium oxide covering the metal surface, which guarantees its resistance to corrosion. Despite its biocompatible characteristic, this material does not promote the formation of a hydroxyapatite layer, therefore, many research groups have sought to alter the material`s surface, introducing modifications that might influence corrosion resistance. The electrochemical behavior of cp Ti, with hydroxyapatite coating and without hydroxyapatite coating, commonly used in implant materials, was investigated using an artificial saliva solution at 25 degrees C and pH=7.4. In the conditions of the study it was observed that the hydroxyapatite layer influences the properties of corrosion resistance. This study of the behavior of cp Ti with and without hydroxyapatite coating, in naturally aerated artificial saliva solution at 25 degrees C, was based on open circuit potential measurements and potentiodynamic polarization curves. At approximately 1x10(-6) A/cm(2) the potential for cp Ti with and without hydroxyapatite coating begins to increase at a faster rate, but at -74mV (SCE) for coated cp Ti and at 180mV (SCE) for uncoated cp Ti the increase in potential begins to slow. This behavior, characterized by a partial stabilization of current density, indicates that in those potential ranges a protective passive film is formed.
Resumo:
The corrosion resistance of Ti and Ti-6Al-4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV-Vis spectrophotometry. The tests were done in Hank solution at 25 degrees C and 37 degrees C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 degrees C and 37 degrees C), and for Ti-6Al-4V (at 25 degrees C), which was interpreted as the formation and growth of a passive film on the metallic surfaces. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Titanium alloys, alloys, especially beta-type alloys containing beta-stabilizing elements, constitute a highly versatile category of metallic materials that have been under constant development for application in orthopedics and dentistry. This type of alloy generally presents a high mechanical strength-to-weight ratio, excellent corrosion resistance and low elastic modulus. The purpose of this study is to evaluate the cytotoxicity and adhesion of fibroblast cells on titanium alloy substrates containing Nb, Ta, Zr, Cu, Sn and Mo alloying elements. Cells cultured on polystyrene were used as controls. In vitro results with Vero cells demonstrated that the tested materials, except Cu-based alloy, presented high viability in short-term testing. Adhesion of cells cultured on disks showed no differences between the materials and reference except for the Ti-Cu alloy, which showed reduced adhesion attributed to poor metabolic activity. Titanium alloys with the addition of Nb, Ta, Zr, Sn and Mo elements show a promising potential for biomedical applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: This study aimed to compare the cytotoxicity of base-metal dental alloys and to evaluate if the casting method could influence their cytotoxicity. Methods: Disks of base-metal dental alloys were cast by two methods: plasma, under argon atmosphere, injected by vacuum-pressure; and oxygen-gas flame, injected by centrifugation, except Ti-6Al-4V and commercially pure titanium (cpTi), cast only by plasma. SCC9 cells were cultured in culture media D-MEM/Ham`s F12 supplemented, at 37 degrees C in a humidified atmosphere of 5% carbon dioxide and 95% air, on the previously prepared disks. At subconfluence in wells without disks (control), cell number and viability were evaluated. Results: In plasma method, cpTi and Ti-6Al-4V were similar to control and presented higher number of cells than all other alloys, followed by Ni-Cr. In oxygen-gas name method, all alloys presented fewer cells than control. Ni-Cr presented more cells than any other alloy, followed by Co-Cr-Mo-W which presented more cells than Ni-Cr-Ti, Co-Cr-Mo, and Ni-Cr-Be. There were no significant differences between casting methods related to cell number. Cell viability was not affected by either chemical composition or casting methods. Conclusion: cpTi and Ti-6Al-4V were not cytotoxic while Ni-Cr-Be was the most cytotoxic among tested alloys. The casting method did not affect cytotoxicity of the alloys. (c) 2007 Wiley Periodicals, Inc.
Resumo:
This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 mu m [SD: 91.48] to 39.90 mu m [SD: 27.13]) and cpTi (118.56 mu m [51.35] to 27.87 mu m [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.
Resumo:
Statement of problem. In vitro studies on the retentive strengths of various cements used to retain posts have reported conflicting results. Purpose. The purpose of this study was to compare the tensile strength of commercially pure titanium and type III cast gold-alloy posts and cores cemented with zinc phosphate or resin cement. Material and methods. Forty-two extracted human canines were endoclontically treated. The root preparations were accomplished using Largo reamers (10 mm in depth and 1.7 mm in diameter). Acrylic resin patterns for the posts and cores were made, and specimens were cast in commercially pure titanium and in type III gold alloy (n=7). Fourteen titanium cast posts and cores were submitted to surface treatment with Kroll acid solution and to scanning electron microscopy (SEM), before and after acid etching. The groups (n=7) were cemented with zinc phosphate cement or resin cement (Panavia F). Tensile strengths were measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The results (Kgf) were statistically analyzed by 2-way ANCIVA (alpha=.05). Results. The 2-way ANOVA indicated that there were no significant differences among the groups tested. Retentive means for zinc phosphate and Panavia F cements were statistically similar. The bond strength was not Influenced by the alloy, the luting material, or the etching treatment. SEM analysis indicated that the etched surfaces were smoother than those that did not receive surface treatment, but this fact did not influence the results. Conclusions. Commercially pure titanium cast posts and cores cemented with zinc phosphate and resin cements demonstrated similar mean tensile retentive values. Retentive values were also similar to mean values recorded for cast gold-alloy posts and cores cemented with zinc phosphate cement and resin cements.
Resumo:
Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area. Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model. Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 x 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis. Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months - Ti (p = 0.000) and HA (p = 0.009) - and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter`s sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect`s marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites. Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.
Resumo:
The purpose of this study was to compare, by mechanical in vitro testing, a 2.0-mm system made with poly-L-DL-lactide acid with an analogue titanium-based system. Mandible replicas were used as a substrate and uniformly sectioned on the left mandibular angle. The 4-hole plates were adapted and stabilized passively in the same site in both groups using four screws, 6.0 mm long. During the resistance-to-load test, the force was applied perpendicular to the occlusal plane at three different points: first molar at the plated side; first molar at the contralateral side; and between the central incisors. At 1 mm of displacement, no statistically significant difference was found. At 2 mm displacement, a statistically significant difference was observed when an unfavourable fracture was simulated and the load was applied in the contralateral first molar and when a favourable fracture was simulated and the load was applied between the central incisors. At the failure displacement, a statistically significant difference was observed only when the favourable fracture was simulated and the load was applied on the first molar at the plated side. In conclusion, despite more failure, the poly-L-DL-lactic acid-based system was effective.
Resumo:
This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The presence of anatase and rutile domains on nanocrystalline films of P25 TiO(2), as well as the distinct coordination modes of carboxylates on those phases, were revealed by confocal Raman microscopy, a technique that showed to be suitable for imaging the chemical morphology down to submicrometric size.
Resumo:
The influence of bovine serum albumin (BSA) on the anodic dissolution of chromium present in UNS S31254 stainless steel (SS) in 0.15 mol L-1 NaCl at 37.0 +/- 0.5 degrees C has been studied, using anodic potentiostatic polarization curves and optical emission spectroscopy. Electrochemical results have shown that BSA has little effect on the transpassivation potential (E-T) and on the passivation current density values. However on the passivation range, BSA diminishes the intensity of the anodic wave seen at about E=750mV versus SCE attributed to Cr(III)/Cr(VI) oxidation. Optical emission spectroscopy results have shown that BSA prevents the anodic dissolution of chromium to occur and minimizes iron dissolution above the transpassivation potential (E=1160 mV versus SCE). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Titanium dioxide was obtained by hydrolysis of the corresponding ethoxide, followed by washing, drying, and calcination at 80, 160, 240, 320, 400, and 700 C, respectively. The following surface properties of the solids obtained were determined as a function of the calcinations temperature: T(Calcn); area by the BET method; BrOnsted acidity by titration with sodium hydroxide; empirical polarity, ET(30); Lewis acidity, alpha(Surf); Lewis basicity, beta(Surf); and dipolarity/polarizability pi*(Sturf), by use of solvatochromic indicators. Except for le surf whose value increased slightly, heating the samples resulted in a decrease of all of the above-mentioned surface properties, due to the decrease of surface hydroxyl groups. This conclusion has been corroborated by FTIR. Values of E(T)(30), alpha(Surf), and pi*(Surf) are higher than those of water and alcohols; the BrOnsted and Lewis acidities of the samples correlate linearly. The advantages of using solvatochromic indicators to probe the surface properties and relevance of the results to the applications of TiO(2) are discussed.
Resumo:
Fuel distribution uses 304 stainless steel containers for the storage of biofuels, however there are few reports in the literature about the corrosive aspects this. steel in biodiesel. The objective of this research is to study the corrosive behavior of 304 austenitic stainless steel in the presence of biodiesel, unwashed and washed, with aqueous solutions of citric, oxalic, acetic and ascorbic acids 0,01 mol L(-1), and compare with results obtained for the copper (ASTM D130). The employedtechniques were: atomic absorption spectrometry (AAS) and optical microscopy (OM). The results of EA A showed a low rate of corrosion for the stainless steel, the alloys elements studied were Cr, Ni and Fe, the highest rate was observed for the chrome, 1.78 ppm / day in biodiesel with or without washing. The OM of the 304 steel, when compared with that of copper has a low corrosion rate in the 304 steel/biodiesel system. Not with standing, this demonstrates that not only the 304 steel, but also the copper corrodes in biodiesel