88 resultados para three dimensional approach
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Resumo:
The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.
Resumo:
The analysis of one-, two-, and three-dimensional coupled map lattices is here developed under a statistical and dynamical perspective. We show that the three-dimensional CML exhibits low dimensional behavior with long range correlation and the power spectrum follows 1/f noise. This approach leads to an integrated understanding of the most important properties of these universal models of spatiotemporal chaos. We perform a complete time series analysis of the model and investigate the dependence of the signal properties by change of dimension. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.
Resumo:
Mixing layers are present in very different types of physical situations such as atmospheric flows, aerodynamics and combustion. It is, therefore, a well researched subject, but there are aspects that require further studies. Here the instability of two-and three-dimensional perturbations in the compressible mixing layer was investigated by numerical simulations. In the numerical code, the derivatives were discretized using high-order compact finite-difference schemes. A stretching in the normal direction was implemented with both the objective of reducing the sound waves generated by the shear region and improving the resolution near the center. The compact schemes were modified to work with non-uniform grids. Numerical tests started with an analysis of the growth rate in the linear regime to verify the code implementation. Tests were also performed in the non-linear regime and it was possible to reproduce the vortex roll-up and pairing, both in two-and three-dimensional situations. Amplification rate analysis was also performed for the secondary instability of this flow. It was found that, for essentially incompressible flow, maximum growth rates occurred for a spanwise wavelength of approximately 2/3 of the streamwise spacing of the vortices. The result demonstrated the applicability of the theory developed by Pierrehumbet and Widnall. Compressibility effects were then considered and the maximum growth rates obtained for relatively high Mach numbers (typically under 0.8) were also presented.
Resumo:
A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups. Numerical results of regional mean values representing the intensity and direction of movement in radial direction are presented. A difference of one order of magnitude in the intensity of the movement on patients in relation to the normal subjects was observed. Quantitative and qualitative parameters gave good indications of potential application of the technique to diagnosis and follow up of patients submitted to CRT.
Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser
Resumo:
In the present study, a finite element model of a half-sectioned molar tooth was developed in order to understand the thermal behavior of dental hard tissues (both enamel and dentin) under laser irradiation. The model was validated by comparing it with an in vitro experiment where a sound molar tooth was irradiated by an Er,Cr:YSGG pulsed laser. The numerical tooth model was conceived to simulate the in vitro experiment, reproducing the dimensions and physical conditions of the typical molar sound tooth, considering laser energy absorption and calculating the heat transfer through the dental tissues in three dimensions. The numerical assay considered the same three laser energy densities at the same wavelength (2.79 mu m) used in the experiment. A thermographic camera was used to perform the in vitro experiment, in which an Er, Cr: YSGG laser (2.79 mu m) was used to irradiate tooth samples and the infrared images obtained were stored and analyzed. The temperature increments in both the finite element model and the in vitro experiment were compared. The distribution of temperature inside the tooth versus time plotted for two critical points showed a relatively good agreement between the results of the experiment and model. The three dimensional model allows one to understand how the heat propagates through the dentin and enamel and to relate the amount of energy applied, width of the laser pulses, and temperature inside the tooth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2953526]
Resumo:
The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.
Resumo:
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H alpha, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman & O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10(-4) M(circle dot) is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
Resumo:
The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.
Resumo:
Hemoglobinopathies were included in the Brazilian Neonatal Screening Program on June 6, 2001. Automated high-performance liquid chromatography (HPLC) was indicated as one of the diagnostic methods. The amount of information generated by these systems is immense, and the behavior of groups cannot always be observed in individual analyses. Three-dimensional (3-D) visualization techniques can be applied to extract this information, for extracting patterns, trends or relations from the results stored in databases. We applied the 3-D visualization tool to analyze patterns in the results of hemoglobinopathy based on neonatal diagnosis by HPLC. The laboratory results of 2520 newborn analyses carried out in 2001 and 2002 were used. The ""Fast"", ""F1"", ""F"" and ""A"" peaks, which were detected by the analytical system, were chosen as attributes for mapping. To establish a behavior pattern, the results were classified into groups according to hemoglobin phenotype: normal (N = 2169), variant (N = 73) and thalassemia (N = 279). 3-D visualization was made with the FastMap DB tool; there were two distribution patterns in the normal group, due to variation in the amplitude of the values obtained by HPLC for the F1 window. It allowed separation of the samples with normal Hb from those with alpha thalassemia, based on a significant difference (P < 0.05) between the mean values of the ""Fast"" and ""A"" peaks, demonstrating the need for better evaluation of chromatograms; this method could be used to help diagnose alpha thalassemia in newborns.
Resumo:
Using the superfield formalism, we study the dynamical breaking of gauge symmetry and super-conformal invariance in the N = 1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N = 2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.
Resumo:
Within the superfield formalism, we study the ultraviolet properties of the three-dimensional super-symmetric quantum electrodynamics. The theory is shown to be finite at all loop orders in a particular gauge.