7 resultados para surface emission

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical data analysis methodology was developed to evaluate the field emission properties of many samples of copper oxide nanostructured field emitters. This analysis was largely done in terms of Seppen-Katamuki (SK) charts, field strength and emission current. Some physical and mathematical models were derived to describe the effect of small electric field perturbations in the Fowler-Nordheim (F-N) equation, and then to explain the trend of the data represented in the SK charts. The field enhancement factor and the emission area parameters showed to be very sensitive to variations in the electric field for most of the samples. We have found that the anode-cathode distance is critical in the field emission characterization of samples having a non-rigid nanostructure. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer-by-layer (LbL) films of poly(p-phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 degrees C had a dichroic ratio delta = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with delta = 1.0 for a 75-layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self-covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. (c) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 206-213, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we studied the properties of absorption and emission line shape of layer-by-layer (LBL) poly(p-phenylene vinylene) (PPV) on indium-tin oxide (ITO) electrode. To minimize the PPV thermal conversion effects during the polymer processing, we used a less aggressive leaving group in the precursor polymer; minimizing electrode degradation. LBL ITO/PPV films showed the same absorption and emission line shape compared with LBL PPV films deposited on non-metallic substrates (glass). With this analysis we indirectly observe the decrease in the ITO degradation. Atomic force microscopy (AFM) technique was used to analyze quantitatively the microscopic morphology of the film surface. Results indicated that the substrate topology is not affected, to a large extent, by the use of dodecylbenzensulfonate (DBS) ion. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, energetic, and vibrational properties of new molecular species, HSeF and HFSe, the associated transition state, and dissociation fragments are investigated using a state-of-the-art theoretical approach, CCSD(T)/CBS. HSeF is a normal covalently bonded molecule 38.98 kcal mol (1) more stable than the complex HF-Se, which shows an unusual structure with a central fluorine atom and a bond angle of 101.8 degrees.A barrier (Delta G(#)) of 49.01 kcal mol (1) separates the two species. Vibrational frequencies are also quite distinct. Heats of formation are evaluated for the diatomic fragments and HSeF. Final Delta(f)H values depend on the experimental accuracy of those of Se(g) and H(2)Se. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The minimum energy path along the lowest-lying pi pi* excited state of 2-aminopurine was calculated to elucidate the mechanisms of radiationless decay and emission in water. The sequential Monte Carlo quantum mechanics approach with a multiconfigurational and perturbative description of the wave function was employed to compute the minimum, transition state, and conical intersection. It was found that the barrier in the potential energy surface to access the conical intersection funnel increases in aqueous environment, making the system prone to enlarge the emission yield. These results rationalize the observed enhancement of emission in 2-aminopurine upon increasing of the solvent polarity. (c) 2008 Elsevier B.V. All rights reserved.