2 resultados para strength loss

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a detailed rock magnetic and Thellier paleointensity study from similar to 130.5 Ma Ponta Grossa Dike Swarms in Southern Brazil. Twenty-nine samples from seven cooling units were pre-selected for paleointensity experiments based on their low viscosity index, stable remanent magnetization and close to reversible continuous thermomagnetic curves. 19 samples characterized by negative pTRM tests, Arai concave- up curves or positive pTRM tests with NRM loss uncorrelated with TRM acquisition were rejected. High quality reliable paleointensity determinations are determined from detailed evaluation criteria, with 10 samples belonging to three dikes passing the tests. The site-mean paleointensity values obtained in this study range from 25.6 +/- 4.3 to 11.3 +/- 2.1 mu T and the corresponding VDM`s range from 5.7 +/- 0.9 to 2.5 +/- 0.5 (10(22) Am(2)). These data yield a VDM mean value of 4.1 +/- 1.6 x 10(22) Am(2). Significant variability of Earth`s magnetic field strength is observed for Ponta Grossa Dikes with the mean value being significantly lower as compared to the mean VDM obtained from the nearby Parana Magmatic Province. The paleointensities for the Ponta Grossa Dikes are in agreement with absolute paleointensities retrieved from the submarine basaltic glasses from 130 to 120 Ma. It seems that a relatively low field prevailed just before the Cretaceous Normal Superchron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to investigate the toughening of phenolic thermoset and its composites reinforced with sisal fibers, using hydroxyl-terminated polybutadiene rubber (HTPB) as both impact modifier and coupling agent. Substantial increase in the impact strength of the thermoset was achieved by the addition 10% of HTPB. Scanning electron microscopy (SEM) images of the material with 15% HTPB content revealed the formation of some rubber aggregates that reduced the efficiency of the toughening mechanism. In composites, the toughening effect was observed only when 2.5% of HTPB was added. The rubber aggregates were found located mainly at the matrix-fiber interface suggesting that HTPB could be used as coupling agent between the sisal fibers and the phenolic matrix. A composite reinforced with sisal fibers pre-impregnated with HTPB was then prepared; its SEM images showed the formation of a thin coating of HTPB on the surface of the fibers. The ability of HTBP as coupling agent between sisal fibers and phenolic matrix was then investigated by preparing a composite reinforced with sisal fibers pre-treated with HTPB. As revealed by its SEM images, the HTPB pre-treatment of the fibers resulted on the formation of a thin coating of HTPB on the surface of the fibers, which provided better compatibility between the fibers and the matrix at their interface, resulting in a material with low water absorption capacity and no loss of impact strength. (C) 2009 Elsevier B.V. All rights reserved.