124 resultados para spin lattice

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate that the short-range spin correlator < S(i)center dot S(j)>, a fundamental measure of the interaction between adjacent spins, can be directly measured in certain insulating magnets. We present magnetostriction data for the insulating organic compound NiCl(2)-4SC(NH(2))(2), and show that the magnetostriction as a function of field is proportional to the dominant short-range spin correlator. Furthermore, the constant of proportionality between the magnetostriction and the spin correlator gives information about the spin-lattice interaction. Combining these results with the measured Young's modulus, we are able to extract dJ/dz, the dependence of the superexchange constant J on the Ni interionic distance z.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a ""dispersionlike"" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic M( T, H, P) and electrical transport.( T, H, P) measurements in a strong spin-lattice-charge coupled La(0.7)Ca(0.3)MnO(3) system have been conducted. The application of H and P leads to the formation of different magnetic domain structures in the vicinity and below the polaronic-to-ferromagnetic transition temperature. The charge mobility is more sensitive to the variation of the spatial wave function overlap between Mn(3+) eg and O(2-) 2p orbitals due to the applied compacting pressure rather than the relative spin orientation between neighbouring Mn ions when the magnetic field is applied. In spite of the presence of different magnetic domain structures due to the sample history, the effect of magnetic field and pressure is less pronounced at lower temperatures on electrical transport properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work report results from proton nuclear magnetic resonance (NMR), continuous-wave (CW-EPR) and pulsed electron paramagnetic resonance (P-EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing acetic acid. cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 2 x 10(-5) S/cm was obtained at room temperature for samples prepared with 33 wt% of acetic acid. Proton ((1)H) line shapes and spin-lattice relaxation times were measured as a function of temperature. The NMR results show that the proton mobility is dependent on acetic acid content in the plasticized polymer gel electrolytes. The CW-EPR spectra, which were carried out in samples doped with copper perchlorate, indicate the presence of the paramagnetic Cu(2+) ions in axially distorted sites. The P-EPR technique, known as electron spin echo envelope modulation (ESEEM), was employed to show the involvement of both, hydrogen and nitrogen atoms, in the copper complexation of the gel electrolyte. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear Magnetic Resonance spectroscopy (NMR) and complex impedance spectroscopy have been used to study gelatin-based polymer electrolytes plasticized with glycerol and containing lithium perchlorate. The studied samples were prepared with salt concentration of 7.9 wt% and 10.3 wt%. Ionic conductivity of about 10(-5) S/cm was obtained at room temperature for both samples. Lithium (Li-7) and proton (H-1) lineshapes and spin-lattice relaxation times were measured as a function of temperature. The Li-7 NMR relaxation results indicate that the ionic mobility in this system is comparable to those found in other plasticized polymer electrolytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements of H-1 and C-13 Nuclear Magnetic Resonance (NMR) for the nano-composite materials formed by the intercalation of hexadecylamine (HDA) in metal oxides (TiO2, V2O5 and MoO3), are reported. The H-1 NMR spin-lattice relaxation in the rotating frame was described by using the spectral density due to Davidson and Cole, which incorporates a distribution of correlation times characterized by a width parameter epsilon. The fitting of the data was obtained for epsilon = 0.74, indicating that the correlation times are distributed over a narrow range in this system. High-resolution C-13 NMR techniques were used to resolve the NMR lines of middle-chain methylene groups in the spectra and variable contact time cross-polarization {H-1-}C-13 experiments were employed to analyze the reorientation dynamics of the CH3 and CH2 groups in the HDA chains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impedance spectroscopy and nuclear magnetic resonance (NMR) were used to investigate the mobility of water molecules located in the interlayer space of H(+) - exchanged bentonite clay. The conductivity obtained by ac measurements was 1.25 x 10(-4) S/cm at 298 K. Proton ((1)H) lineshapes and spin-lattice relaxation times were measured as a function of temperature over the temperature range 130-320 K. The NMR experiments exhibit the qualitative features associated with the proton motion, namely the presence of a (1)H NMR line narrowing and a well-defined spin-lattice relaxation rate maximum. The temperature dependence of the proton spin-lattice relaxation rates was analyzed with the spectral density function appropriate for proton dynamics in a two-dimensional system. The self-diffusion coefficient estimated from our NMR data, D similar to 2 x 10(-7) cm(2)/s at 300 K, is consistent with those reported for exchanged montmorillonite clay hydrates studied by NMR and quasi-elastic neutron scattering (QNS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized version of the nonequilibrium linear Glauber model with q states in d dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the q states. Exact expressions for the two-time autocorrelation and response functions on a d-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution synchrotron x-ray diffraction measurements were performed on single crystalline and powder samples of BiMn(2)O(5). A linear temperature dependence of the unit cell volume was found between T(N)=38 and 100 K, suggesting that a low-energy lattice excitation may be responsible for the lattice expansion in this temperature range. Between T(*)similar to 65 K and T(N), all lattice parameters showed incipient magnetoelastic effects, due to short-range spin correlations. An anisotropic strain along the a direction was also observed below T(*). Below T(N), a relatively large contraction of the a parameter following the square of the average sublattice magnetization of Mn was found, indicating that a second-order spin Hamiltonian accounts for the magnetic interactions along this direction. On the other hand, the more complex behaviors found for b and c suggest additional magnetic transitions below T(N) and perhaps higher-order terms in the spin Hamiltonian. Polycrystalline samples grown by distinct routes and with nearly homogeneous crystal structure above T(N) presented structural phase coexistence below T(N), indicating a close competition amongst distinct magnetostructural states in this compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the chemical formula A(2)BB'O(6), where the B' atom has a 4d(1) or 5d(1) electronic configuration and forms a face-centered-cubic lattice. The combination of the triply degenerate t(2g) orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment j=3/2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the [110] direction, and a nonmagnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two-sublattice structure described by the ordering wave vector Q=2 pi(001). We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a nonmagnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a new implementation of linear covariant gauges on the lattice, based on a minimizing functional that can be interpreted as the Hamiltonian of a spin-glass model in a random external magnetic field. We show that our method solves most problems encountered in earlier implementations, mostly related to the no-go condition formulated by Giusti [Nucl. Phys. B498, 331 (1997)]. We carry out tests in the SU(2) case in four space-time dimensions. We also present preliminary results for the transverse gluon propagator at different values of the gauge parameter xi.