8 resultados para shortest paths
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Automatic summarization of texts is now crucial for several information retrieval tasks owing to the huge amount of information available in digital media, which has increased the demand for simple, language-independent extractive summarization strategies. In this paper, we employ concepts and metrics of complex networks to select sentences for an extractive summary. The graph or network representing one piece of text consists of nodes corresponding to sentences, while edges connect sentences that share common meaningful nouns. Because various metrics could be used, we developed a set of 14 summarizers, generically referred to as CN-Summ, employing network concepts such as node degree, length of shortest paths, d-rings and k-cores. An additional summarizer was created which selects the highest ranked sentences in the 14 systems, as in a voting system. When applied to a corpus of Brazilian Portuguese texts, some CN-Summ versions performed better than summarizers that do not employ deep linguistic knowledge, with results comparable to state-of-the-art summarizers based on expensive linguistic resources. The use of complex networks to represent texts appears therefore as suitable for automatic summarization, consistent with the belief that the metrics of such networks may capture important text features. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.
Resumo:
A structure-dynamic approach to cortical systems is reported which is based on the number of paths and the accessibility of each node. The latter measurement is obtained by performing self-avoiding random walks in the respective networks, so as to simulate dynamics, and then calculating the entropies of the transition probabilities for walks starting from each node. Cortical networks of three species, namely cat, macaque and humans, are studied considering structural and dynamical aspects. It is verified that the human cortical network presents the highest accessibility and number of paths (in terms of z-scores). The correlation between the number of paths and accessibility is also investigated as a mean to quantify the level of independence between paths connecting pairs of nodes in cortical networks. By comparing the cortical networks of cat, macaque and humans, it is verified that the human cortical network tends to present the largest number of independent paths of length larger than four. These results suggest that the human cortical network is potentially the most resilient to brain injures. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.
Resumo:
We study the asymptotic properties of the number of open paths of length n in an oriented rho-percolation model. We show that this number is e(n alpha(rho)(1+o(1))) as n ->infinity. The exponent alpha is deterministic, it can be expressed in terms of the free energy of a polymer model, and it can be explicitly computed in some range of the parameters. Moreover, in a restricted range of the parameters, we even show that the number of such paths is n(-1/2)We (n alpha(rho))(1+o(1)) for some nondegenerate random variable W. We build on connections with the model of directed polymers in random environment, and we use techniques and results developed in this context.
Resumo:
Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley-Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.
Resumo:
We study here when the composite of it irreducible morphisms in almost sectional paths is non-zero and lies in Rn+1 (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance d(G)(u, v) is at least d(C)(u, v) - e(n). Let omega(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n)= log(d-1)log(d-1) n+omega(n) and vertical bar C vertical bar =2 log(d-1) n+O(omega(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 115-136, 2011