15 resultados para runoff-rainfall erosivity parameter
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
The mechanisms resulting in large daily rainfall events in Northeast Brazil are analyzed using data filtering to exclude periods longer than 30 days. Composites of circulation fields that include all independent events do not reveal any obvious forcing mechanisms as multiple patterns contribute to Northeast Brazil precipitation variability. To isolate coherent patterns, subsets of events are selected based on anomalies that precede the Northeast Brazil precipitation events at different locations. The results indicate that at 10 degrees S, 40 degrees W, the area of lowest annual rainfall in Brazil, precipitation occurs mainly in association with trailing midlatitude synoptic wave trains originating in either hemisphere. Closer to the equator at 5 degrees S, 37.5 degrees W, an additional convection precursor is found to the west, with a spatial structure consistent with that of a Kelvin wave. Although these two sites are located within only several hundred kilometers of each other and the midlatitude patterns that induce precipitation appear to be quite similar, the dates on which large precipitation anomalies occur at each location are almost entirely independent, pointing to separate forcing mechanisms.
Resumo:
The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below similar to 0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km(2). On the other hand, in the patches aligned in the opposite direction (north-south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km(2). The authors` estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.
Resumo:
The frequency of extreme rainfall events in Southern Brazil is impacted by Ell Nino - Southern Oscillation (ENSO) episodes, especially in austral spring. There are two areas in which this impact is more significant: one is on the coast, where extreme events are more frequent during El Nino (EN) and the other one extends inland, where extreme events increase during EN and decrease during La Nina (LN). Atmospheric circulation patterns associated with severe rainfall in those areas are similar (opposite) to anomalous patterns characteristic of EN (LN) episodes, indicating why increase (decrease) of extreme events in EN (LN) episodes is favoured. The most recurrent precipitation patterns during extreme rainfall events in each of these areas are disclosed by Principal Component Analysis (PCA) and evidence the separation between extreme events in these areas: a severe precipitation event generally does not occur simultaneously in the coast and inland, although they may Occur inland and in the coastal region in sequence. Although EN predominantly enhances extreme rainfall, there are EN years in which fewer severe events occur than the average of neutral years, and also the enhancement of extreme rainfall is not uniform for different EN episodes, because the interdecadal non-ENSO variability also modulates significantly the frequency of extreme events in Southern Brazil. The inland region, which is more affected, shows increase (decrease) of extreme rainfall in association with the negative (positive) phase of the Atlantic Multidecadal Variability, with the negative (positive) phase of the Pacific Multidecadal Variability and with the positive (negative) phase of the Pacific Interdecadal Variability. Copyright (C) 2008 Royal Meteorological Society
Resumo:
This study investigates how the summer thunderstorms developed over the city of Sao Paulo and if the pollution might affect its development or characteristics during the austral summer (December-January-February-March, DJFM months). A total of 605 days from December 1999 to March 2004 was separated as 241 thunderstorms days (TDs) and 364 non-thunderstorm days (NTDs). The analyses are performed by using hourly measurements of air temperature (T), web-bulb temperature (Tw), surface atmospheric pressure (P), wind velocity and direction, rainfall and thunder and lightning observations collected at the Meteorological Station of the University of Sao Paulo in conjunction with aerosol measurements obtained by AERONET (Aerosol Robotic Network), and the NCEP-DOE (National Centers for Environmental Prediction Department of Energy) reanalysis and radiosondes. The wind diurnal cycle shows that for TDs the morning flow is from the northwest rotating to the southeast after 16: 00 local time (LT) and it remains from the east until the night. For the NTDs, the wind is well characterized by the sea-breeze circulation that in the morning has the wind blowing from the northeast and in the afternoon from the southeast. The TDs show that the air temperature diurnal cycle presents higher amplitude and the maximum temperature of the day is 3.2 degrees C higher than in NTDs. Another important factor found is the difference between moisture that is higher during TDs. In terms of precipitation, the TDs represent 40% of total of days analyzed and those days are responsible for more than 60% of the total rain accumulation during the summer, for instance 50% of the TDs had more than 15.5mm day(-1) while the NTDs had 4 mm day(-1). Moreover, the rainfall distribution shows that TDs have higher rainfall rate intensities and an afternoon precipitation maximum; while in the NTDs there isn`t a defined precipitation diurnal cycle. The wind and temperature fields from NCEP reanalysis concur with the local weather station and radiosonde observations. The NCEP composites show that TDs are controlled by synoptic circulation characterized by a pre-frontal situation, with a baroclinic zone situated at southern part of Sao Paulo. In terms of pollution, this study employed the AERONET data to obtain the main aerosol characteristics in the atmospheric column for both TDs and NTDs. The particle size distribution and particle volume size distribution have similar concentrations for both TDs and NTDs and present a similar fine and coarse mode mean radius. In respect to the atmospheric loading, the aerosol optical depth (AOD) at different frequencies presented closed mean values for both TDs and NTDs that were statistically significant at 95% level. The spectral dependency of those values in conjunction with the Angstrom parameter reveal the higher concentration of the fine mode particles that are more likely to be hygroscopic and from urban areas. In summary, no significant aerosol effect could be found on the development of summer thunderstorms, suggesting the strong synoptic control by the baroclinic forcing for deep convective development. (C) 2010 Published by Elsevier B. V.
Resumo:
This work analyzes high-resolution precipitation data from satellite-derived rainfall estimates over South America, especially over the Amazon Basin. The goal is to examine whether satellite-derived precipitation estimates can be used in hydrology and in the management of larger watersheds of South America. High spatial-temporal resolution precipitation estimates obtained with the CMORPH method serve this purpose while providing an additional hydrometeorological perspective on the convective regime over South America and its predictability. CMORPH rainfall estimates at 8-km spatial resolution for 2003 and 2004 were compared with available rain gauge measurements at daily, monthly, and yearly accumulation time scales. The results show the correlation between satellite-derived and gauge-measured precipitation increases with accumulation period from daily to monthly, especially during the rainy season. Time-longitude diagrams of CMORPH hourly rainfall show the genesis, strength, longevity, and phase speed of convective systems. Hourly rainfall analyses indicate that convection over the Amazon region is often more organized than previously thought, thus inferring that basin scale predictions of rainfall for hydrological and water management purposes have the potential to become more skillful. Flow estimates based on CMORPH and the rain gauge network are compared to long-term observed average flow. The results suggest this satellite-based rainfall estimation technique has considerable utility. Other statistics for monthly accumulations also suggest CMORPH can be an important source of rainfall information at smaller spatial scales where in situ observations are lacking.
Resumo:
Support vector machines (SVMs) were originally formulated for the solution of binary classification problems. In multiclass problems, a decomposition approach is often employed, in which the multiclass problem is divided into multiple binary subproblems, whose results are combined. Generally, the performance of SVM classifiers is affected by the selection of values for their parameters. This paper investigates the use of genetic algorithms (GAs) to tune the parameters of the binary SVMs in common multiclass decompositions. The developed GA may search for a set of parameter values common to all binary classifiers or for differentiated values for each binary classifier. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We show that the S parameter is not finite in theories of electroweak symmetry breaking in a slice of anti-de Sitter five-dimensional space, with the light fermions localized in the ultraviolet. We compute the one-loop contributions to S from the Higgs sector and show that they are logarithmically dependent on the cutoff of the theory. We discuss the renormalization of S, as well as the implications for bounds from electroweak precision measurements on these models. We argue that, although in principle the choice of renormalization condition could eliminate the S parameter constraint, a more consistent condition would still result in a large and positive S. On the other hand, we show that the dependence on the Higgs mass in S can be entirely eliminated by the renormalization procedure, making it impossible in these theories to extract a Higgs mass bound from electroweak precision constraints.
Resumo:
We consider a Moyal plane and propose to make the noncommutativity parameter Theta(mu nu) bifermionic, i.e. composed of two fermionic (Grassmann odd) parameters. The Moyal product then contains a finite number of derivatives, which avoid the difficulties of the standard approach. As an example, we construct a two-dimensional noncommutative field theory model based on the Moyal product with a bifermionic parameter and show that it has a locally conserved energy-momentum tensor. The model has no problem with the canonical quantization and appears to be renormalizable.
Resumo:
The interest in attractive Bose-Einstein Condensates arises due to the chemical instabilities generate when the number of trapped atoms is above a critical number. In this case, recombination process promotes the collapse of the cloud. This behavior is normally geometry dependent. Within the context of the mean field approximation, the system is described by the Gross-Pitaevskii equation. We have considered the attractive Bose-Einstein condensate, confined in a nonspherical trap, investigating numerically and analytically the solutions, using controlled perturbation and self-similar approximation methods. This approximation is valid in all interval of the negative coupling parameter allowing interpolation between weak-coupling and strong-coupling limits. When using the self-similar approximation methods, accurate analytical formulas were derived. These obtained expressions are discussed for several different traps and may contribute to the understanding of experimental observations.
Resumo:
In this paper we consider the case of a Bose gas in low dimension in order to illustrate the applicability of a method that allows us to construct analytical relations, valid for a broad range of coupling parameters, for a function which asymptotic expansions are known. The method is well suitable to investigate the problem of stability of a collection of Bose particles trapped in one- dimensional configuration for the case where the scattering length presents a negative value. The eigenvalues for this interacting quantum one-dimensional many particle system become negative when the interactions overcome the trapping energy and, in this case, the system becomes unstable. Here we calculate the critical coupling parameter and apply for the case of Lithium atoms obtaining the critical number of particles for the limit of stability.
Resumo:
This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.