12 resultados para repression
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Pregnancy is accompanied by hyperestrogenism, however, the role of estrogens in the gestational-induced insulin resistance is unknown. Skeletal muscle plays a fundamental role in this resistance, where GLUT4 regulates glucose uptake. We investigated: (1) effects of oophorectomy and estradiol (E2) on insulin sensitivity and GLUT4 expression. E2 (similar to 200 nM) for 7 days decreased sensitivity, reducing similar to 30% GLUT4 mRNA and protein (P< 0.05) and plasma membrane expression in muscle; (2) the expression of ER alpha and ER beta in L6 myotubes, showing that both coexpress in the same nucleus; (3) effects of E2 on GLUT4 in L6, showing a time- and dose-dependent response. High concentration (100 nM) for 6 days reduced similar to 25% GLUT4 mRNA and protein (P < 0.05). Concluding, E2 regulates GLUT4 in muscle, and at high concentrations, such as in pregnancy, reduces GLUT4 expression and, in vivo, decreases insulin sensitivity. Thus, hyperestrogenism may be involved in the pregnancy-induced insulin resistance and/or gestational diabetes. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.
Resumo:
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-alpha and ribavirin therapy. Major histocompatibility complex class I restricted CD8+ T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated alpha-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy.
Resumo:
We describe three patients with a comparable deletion encompassing SLC25A43, SLC25A5, CXorf56, UBE2A, NKRF, and two non-coding RNA genes, U1 and LOC100303728. Moderate to severe intellectual disability (ID), psychomotor retardation, severely impaired/absent speech, seizures, and urogenital anomalies were present in all three patients. Facial dysmorphisms include ocular hypertelorism, synophrys, and a depressed nasal bridge. These clinical features overlap with those described in two patients from a family with a similar deletion at Xq24 that also includes UBE2A, and in several patients of Brazilian and Polish families with point mutations in UBE2A. Notably, all five patients with an Xq24 deletion have ventricular septal defects that are not present inpatients with a point mutation, which might be attributed to the deletion of SLC25A5. Taken together, the UBE2A deficiency syndrome in male patients with a mutation in or a deletion of UBE2A is characterized by ID, absent speech, seizures, urogenital anomalies, frequently including a small penis, and skin abnormalities, which include generalized hirsutism, low posterior hairline, myxedematous appearance, widely spaced nipples, and hair whorls. Facial dysmorphisms include a wide face, a depressed nasal bridge, a large mouth with downturned corners, thin vermilion, and a short, broad neck. (C) 2010 Wiley-Liss, Inc.
Resumo:
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.
Resumo:
sigma(S) is responsible for the transcriptional regulation of genes related to protection against stresses and bacterial survival and it accumulates in the cell under conditions of stress, such as nutrient limitation. An increase in the levels of sigma(S) causes a reduction in the expression of genes that are transcribed by RNA polymerase associated with the principal sigma factor, sigma(70). phoA, that encodes alkaline phosphatase (AP) is expressed under phosphate shortage conditions, and is also repressed by sigma(S). Here we show that in a Pi-limited chemostat, accumulation of rpoS mutations is proportional to the intrinsic level of sigma(S) in the cells. Acquisition of mutations in rpoS relieves repression of the PHO genes. We also devised a non-destructive method based on the rpoS effect on AP that differentiates between rpo(S+) and rpoS mutants, as well as between high and low-sigma(S) producers. Using this method, we provide evidence that sigma(S) contributes to the repression of AP under conditions of Pi excess and that AP variation among different strains is at least partly due to intrinsic variation in sigma(S) levels. Consequently, a simple and non-destructive AP assay can be employed to differentiate between strains expressing different levels of sigma(S) on agar plates.
Resumo:
The ccpA gene was inactivated in the polyhydroxybutyrate (PHB)-producing strain Bacillus sp. MA3.3 in order to reduce glucose catabolite repression over pentoses and develop improved bacterial strains for the production of PHB from lignocellulosic hydrolysates. Mutant Bacillus sp. MSL7 Delta CcpA are unable to grow on glucose and ammonia as sole carbon and nitrogen sources, respectively. Supplementation of glutamate as the nitrogen source or the substitution of the carbon source by xylose allowed the mutant to partially recover its growth performance. RT-PCR showed that CcpA stimulates the expression of the operon (gltAB), responsible for ammonia assimilation via glutamate in Bacillus sp. MA3.3. Moreover, it was demonstrated that the supplementation of xylose or glutamate was capable of stimulating gltAB operon expression independently of CcpA. In PHB production experiments in mineral media, it has been observed that the glucose catabolite repression over the pentoses was partially released in MSL7. Although the carbohydrate consumption is faster in the ccpA mutant, the biomass and PHB biosynthesis are lower, even with supplementation of glutamate. This is attributed to an increase of acetyl-CoA flux towards the tricarboxylic acid cycle observed in the mutant. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Although xylose is a major constituent of lignocellulosic feedstock and the second most abundant sugar in nature, only 22% of 3,152 screened bacterial isolates showed significant growth in xylose in 24 h. Of those 684, only 24% accumulated polyhydroxyalkanoates after 72 h. A mangrove isolate, identified as Bacillus sp. MA3.3, yielded the best results in literature thus far for Gram-positive strains in experiments with glucose and xylose as the sole carbon source. When glucose or xylose were supplied, poly-3-hydroxybutyrate (PHB) contents of cell dry weight were, respectively, 62 and 64%, PHB yield 0.25 and 0.24 g g(-1) and PHB productivity (P(PHB)) 0.10 and 0.06 g l(-1) h(-1). This 40% P(PHB) difference may be related to the theoretical ATP production per 3-hydroxybutyrate (3HB) monomer calculated as 3 mol mol(-1) for xylose, less than half of the ATP/3HB produced from glucose (7 mol mol(-1)). In PHB production using sugar mixtures, all parameters were strongly reduced due to carbon catabolite repression. PHB production using Gram-positive strains is particularly interesting for medical applications because these bacteria do not produce lipopolysaccharide endotoxins which can induce immunogenic reactions. Moreover, the combination of inexpensive substrates and products of more value may lead to the economical sustainability of industrial PHB production.
Resumo:
The pst operon of Escherichia coli is composed of five genes that encode a high-affinity phosphate transport system. pst belongs to the PHO regulon, which is a group of genes and operons that are induced in response to phosphate limitation. The pst operon also has a regulatory role in the repression of PHO genes` transcription under phosphate excess conditions. Transcription of pst is initiated at the promoter located upstream to the first gene, pstS. Immediately after its synthesis, the primary transcript of pst is cleaved into shorter mRNA molecules in a ribonuclease E-dependent manner. Other ribonucleases, such as RNase III and MazF, do not play a role in pst mRNA processing. RNase E is thus at least partially responsible for processing the pst primary transcript.
Resumo:
Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TR alpha and TR beta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TR beta ligands has been stimulated by the finding that several pharmacological actions mediated by TR beta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TR beta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1. The effect of several TR beta ligands, including the TR beta selective agonist GC-I and the TR beta selective antagonist NH-3, were investigated. We also determined the kinetic rate constants for the interaction of TR beta-T3 with both coregulators, and accessed the thermodynamic parameters for the interaction with DAX1. Our findings Suggest that flexibility plays an important role in the interaction between the receptor and its coregulators. and point out important aspects of experimental design that should be addressed when using TR beta LBD and its agonists. Furthermore, the methodology described here may be useful for the identification of new TR beta ligands. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5`-untranslated region:beta-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.
Resumo:
Nitrogen uptake and metabolism are essential to microbial growth. Gat1 belongs to a conserved family of zinc finger containing transcriptional regulators known as GATA-factors. These factors activate the transcription of Nitrogen Catabolite Repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. Cryptococcus neoformans GAT1 is an ortholog to the Aspergillus nidulans AreA and Candida albicans GAD genes. In an attempt to define the function of this transcriptional regulator in C. neoformans, we generated null mutants (gat1 Delta) of this gene. The gat 1 mutant exhibited impaired growth on all amino acids tested as sole nitrogen sources, with the exception of arginine and proline. Furthermore, the gat1 mutant did not display resistance to rapamycin, an immunosuppressant drug that transiently mimics a low-quality nitrogen source. Gal is not required for C. neoformans survival during macrophage infection or for virulence in a mouse model of cryptococcosis. Microarray analysis allowed the identification of target genes that are regulated by Gat1 in the presence of proline, a poor and non-repressing nitrogen source. Genes involved in ergosterol biosynthesis, iron uptake, cell wall organization and capsule biosynthesis, in addition to NCR-sensitive genes, are Gat1-regulated in C. neoformans. (C) 2010 Elsevier Inc. All rights reserved.