39 resultados para reactors in series
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A procedure is proposed for the determination of the residence time distribution (RTD) of curved tubes taking into account the non-ideal detection of the tracer. The procedure was applied to two holding tubes used for milk pasteurization in laboratory scale. Experimental data was obtained using an ionic tracer. The signal distortion caused by the detection system was considerable because of the short residence time. Four RTD models, namely axial dispersion, extended tanks in series, generalized convection and PER + CSTR association, were adjusted after convolution with the E-curve of the detection system. The generalized convection model provided the best fit because it could better represent the tail on the tracer concentration curve that is Caused by the laminar velocity profile and the recirculation regions. Adjusted model parameters were well cot-related with the now rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
This work assesses the photocatalytic (TiO(2)/UV) degradation of a simulated reactive dye bath (Black 5, Red 239, Yellow 17, and auxiliary chemicals). Color removal was monitored by spectrophotometry. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 30 min of irradiation, it was achieved 97% and 40% of color removal with photocatalysis and photolysis, respectively. No mineralization occurred within 30 min. A kinetic model composed of two, first-order in-series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 2.6 min(-1) and the second k(2) = 0.011 min(-1). The fast decolorization of Reactive Black 5 dye is an indication that the number of azo and vinylsulfone groups in the dye molecule maybe a determining factor for the increased photolytic and photocatalytic color removal and degradation rates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A modular superconducting fault current limiter (SFCL) consisting of 16 elements was constructed and tested in a 220 V line for a fault current between 1 kA to 7.4 kA. The elements are made up of second generation (2G) YBCO-coated conductor tapes with stainless steel reinforcement. For each element four tapes were electrically connected in parallel with effective length of 0.4 m per element, totaling 16 elements connected in series. The evaluation of SFCL performance was carried out under DC and AC tests. The DC test was performed through pulsed current tests and its recovery characteristics under load current were analysed by changing the shunt resistor value. The AC test performed using a 3 MVA/220 V/60 Hz transformer has shown the current limiting ratio achieved a factor higher than 10 during fault of up to five cycles without conductor degradation. The measurement of the voltage for each element during the AC test showed that in this modular SFCL the quench is homogeneous and the transition occurs similarly in all the elements.
Resumo:
The objective of this research was to study the behavior of two anaerobic sequencing batch reactors, containing immobilized biomass (AnSBBR), as a function of the ratio of the volume of treated medium in each cycle to the total volume of reaction medium. The reactors, in which mixing was accomplished by recirculation of the liquid phase, were maintained at 30 +/- 1 degrees C and treated different wastewaters in 8-h cycles. The operational conditions imposed had the objective to investigate whether maintenance of a residual volume in the reactor would affect, at the end of each cycle, process efficiency and stability, as well as to verify the intensity of the effect for different types of wastewaters and organic loading rates. The first reactor, with work volume of 2.5 L, treated reconstituted cheese whey at an organic loading rate of 12 g COD.L(-1).d(-1) and presented similar effluent quality for the four conditions under which it was operated: renewal of 100, 70, 50 and 25 % of its work volume at each cycle. Despite the fact that reduction in the renewed volume did not significantly affect effluent quality, in quantitative terms, this reduction resulted in an increase in the amount of organic matter removed by the first reactor. The second reactor, with work volume of 1.8 L, treated synthetic wastewater at organic loading rates of 3 and 5 g COD.L(-1).d(-1) and operated under two conditions for each loading: renewal of 100 and 50 % of its work volume. At the organic loading rate of 3 g COD.L(-1).d(-1), the results showed that both effluent quality and amount of organic matter removed by the second reactor were independent of the treated volume per cycle. At the organic loading rate of 5 g COD.L(-1).d(-1), although the reduction in the renewed volume did not affect the amount of organic matter removed by the reactor, effluent quality improved during reactor operation with total discharge of its volume. In general, results showed process stability under all conditions, evidencing reactor flexibility and the potential to apply this technology in the treatment of different types of wastewater.
Resumo:
Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H, and volatile acids` producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H-2 by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H-2/mol sucrose), 20% (1.6 mol H-2/mol sucrose), 15% (1.2 mol H-2/mol sucrose) and 4% (0.3 mol H-2/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Oxide dispersion strengthened (ODS) ferritic/martensitic (FM) steels are promising candidates for structural applications in future fusion power reactors. In order to evaluate the thermal stability of 80% cold-rolled ODS-EUROFER, samples were annealed for 1 h at temperatures up to about 0.9 T(m), where T(m) is the absolute melting point. The characterization of the annealed samples was performed using transmission electron microscopy and electron backscatter diffraction. Results show that static recovery is the main softening mechanism of this steel when annealed below 800 degrees C. The volume fraction of recrystallized grains is quite small (below 0.10). Above 900 degrees C, martensitic transformation takes place causing pronounced hardening. Large M(23)C(6) particles are found at the grain boundaries after tempering at 750 degrees C for 2 h.
Resumo:
A simple calorimetric method to estimate both kinetics and heat transfer coefficients using temperature-versus-time data under non-adiabatic conditions is described for the reaction of hydrolysis of acetic anhydride. The methodology is applied to three simple laboratory-scale reactors in a very simple experimental setup that can be easily implemented. The quality of the experimental results was verified by comparing them with literature values and with predicted values obtained by energy balance. The comparison shows that the experimental kinetic parameters do not agree exactly with those reported in the literature, but provide a good agreement between predicted and experimental data of temperature and conversion. The differences observed between the activation energy obtained and the values reported in the literature can be ascribed to differences in anhydride-to-water ratios (anhydride concentrations). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Published studies on the association between cancer and paracoccidioidomycosis consist either isolated cases or clinical data based on hospital cohorts of paracoccidioidomycosis. The frequency of neoplasia in series of >= 80 patients with paracoccidioidomycosis ranges from 0.16 to 14.1%, mean of 3.96%. There are only two retrospective controlled studies, one of them showing greater incidence of carcinoma in biopsy and necropsy samples of paracoccidioidomycosis (12 cases in 147 patients with the mycosis: 8.2%) than in the necropsies of the control group (320 cases in 7,302 necropsies: 4.9%). In the other, 22,409 autopsies were reviewed and 4,372 cases of cancer were found; of the 85 patients with paracoccidioidomycosis, 12 were diagnosed with cancer. No differences were observed in the frequency of malignancies between the group of patients with paracoccidioidomycosis (14.1%) and the control group (19.5%). Considering all the reported cases, carcinoma was more frequent than hematological malignancies, and was more often found at the same site or in a neighboring site affected by the mycosis, usually occurring after the diagnosis of the mycosis. Commonly, the basic cause of death was related to secondary infections or neoplasia. Lymphoma was associated with poorly organized rich in fungi granuloma. The clinical course and mortality were related to the cancer evolution or secondary infections and was worse in lymphoid series, metastatic carcinoma or in patients under cytotoxic chemotherapy. Additionally, as in several cases the clinical and histopathological data may mimick neoplasia, the correct diagnosis of both diseases is essential to guarantee an early and safe intervention.
Resumo:
The functional versatility of the distal nephron is mainly due to the large cytological heterogeneity of the segment. Part of Na(+) uptake by distal tubules is dependent on Na(+)/H(+). exchanger 2 (NHE2), implicating a role of distal convoluted cells also in acid-base homeostasis. In addition, intercalated (IC) cells expressed in distal convoluted tubules, connecting tubules and collecting ducts are involved in the final regulation of acid-base excretion. IC cells regulate acid-base handling by 2 main transport proteins, a V-type H(+)-ATPase and a Cl/HCO(3)(-) exchanger, localized at different membrane domains. Type A IC cells are characterized by a luminal H(+)-ATPase in series with a basolateral Cl/HCO(3)(-) exchanger, the anion exchanger AE1. Type B IC cells mediate HCO(3)(-) secretion through the apical Cl(-)/HCO(3)(-) exchanger pendrin in series with a H(+)-ATPase at the basolateral membrane. Alternatively, H(+)/K(+)-ATPases have also been found in several distal tubule cells, particularly in type A and B IC cells. All of these mechanisms are finely regulated, and mutations of 1 or more proteins ultimately lead to expressive disorders of acid-base balance.
Resumo:
In this paper an analytical solution of the temperature of an opaque material containing two overlapping and parallel subsurface cylinders, illuminated by a modulated light beam, is presented. The method is based on the expansion of plane and cylindrical thermal waves in series of Bessel and Hankel functions. This model is addressed to the study of heat propagation in composite materials with interconnection between inclusions, as is the case of inverse opals and fiber reinforced composites. Measurements on calibrated samples using lock-in infrared thermography confirm the validity of the model.
Resumo:
This work investigates the solar heterogeneous photocatalytic degradation of three commercial acid dyes: Blue 9 (C.I. 42090), Red 51 (C.I. 45430), and Yellow 23 (C.I. 19140). TiO(2) P25 from Degussa was used as the photocatalyst. The dyes were completely degraded within 120 min of treatment in the following increasing order of removal rate: Blue 9 < Yellow 23 < Red 51. The photocatalytic color removal process was well described by a two-first-order in-series reaction, followed by another first-order reaction. Photolytic experiments showed that this process is quite inefficient and highly selective towards Red 51 only. The dyes` solution was completely decolorized and organic matter removals up to 99% were achieved with photocatalysis. The lack of selectivity and the possibility of using solar light to excite the photocatalyst are promising results regarding the feasibility of this technology.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the study is to evaluate the effect of the daily variation in concentrations of fine particulate matter (diameter less than 2.5µm - PM2.5) resulting from the burning of biomass on the daily number of hospitalizations of children and elderly people for respiratory diseases, in Alta Floresta and Tangará da Serra in the Brazilian Amazon in 2005. This is an ecological time series study that uses data on daily number of hospitalizations of children and the elderly for respiratory diseases, and estimated concentration of PM2.5. In Alta Floresta, the percentage increases in the relative risk (%RR) of hospitalization for respiratory diseases in children were significant for the whole year and for the dry season with 3-4 day lags. In the dry season these measurements reach 6% (95%CI: 1.4-10.8). The associations were sig-nificant for moving averages of 3-5 days. The %RR for the elderly was significant for the current day of the drought, with a 6.8% increase (95%CI: 0.5-13.5) for each additional 10µg/m3 of PM2.5. No as-sociations were verified for Tangara da Serra. The PM2.5 from the burning of biomass increased hospitalizations for respiratory diseases in children and the elderly.