17 resultados para quantum bound on the LW heavy particle mass
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man`ko states and circular squeezed states. The relation between these states and the ""classical"" trajectories is investigated, and we present numerical explorations of some semiclassical quantities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we give general results on the continuity of pullback attractors for nonlinear evolution processes. We then revisit results of [D. Li, P.E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stoch. Dyn. 4 (3) (2004) 373-384] which show that, under certain conditions, continuity is equivalent to uniformity of attraction over a range of parameters (""equi-attraction""): we are able to simplify their proofs and weaken the conditions required for this equivalence to hold. Generalizing a classical autonomous result [A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992] we give bounds on the rate of convergence of attractors when the family is uniformly exponentially attracting. To apply these results in a more concrete situation we show that a non-autonomous regular perturbation of a gradient-like system produces a family of pullback attractors that are uniformly exponentially attracting: these attractors are therefore continuous, and we can give an explicit bound on the distance between members of this family. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Some observations of galaxies, and in particular dwarf galaxies, indicate a presence of cored density profiles in apparent contradiction with cusp profiles predicted by dark matter N-body simulations. We constructed an analytical model, using particle distribution functions (DFs), to show how a supernova (SN) explosion can transform a cusp density profile in a small-mass dark matter halo into a cored one. Considering the fact that an SN efficiently removes matter from the centre of the first haloes, we study the effect of mass removal through an SN perturbation in the DFs. We find that the transformation from a cusp into a cored profile occurs even for changes as small as 0.5 per cent of the total energy of the halo, which can be produced by the expulsion of matter caused by a single SN explosion.
Resumo:
We present a rigorous, regularization-independent local quantum field theoretic treatment of the Casimir effect for a quantum scalar field of mass mu not equal 0 which yields closed form expressions for the energy density and pressure. As an application we show that there exist special states of the quantum field in which the expectation value of the renormalized energy-momentum tensor is, for any fixed time, independent of the space coordinate and of the perfect fluid form g(mu,nu)rho with rho > 0, thus providing a concrete quantum field theoretic model of the cosmological constant. This rho represents the energy density associated to a state consisting of the vacuum and a certain number of excitations of zero momentum, i.e., the constituents correspond to lowest energy and pressure p <= 0. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We study the effects of several approximations commonly used in coupled-channel analyses of fusion and elastic scattering cross sections. Our calculations are performed considering couplings to inelastic states in the context of the frozen approximation, which is equivalent to the coupled-channel formalism when dealing with small excitation energies. Our findings indicate that, in some cases, the effect of the approximations on the theoretical cross sections can be larger than the precision of the experimental data.
Resumo:
The distribution of masses for neutron stars is analysed using the Bayesian statistical inference, evaluating the likelihood of the proposed Gaussian peaks by using 54 measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37 M(circle dot) and a much wider second peak at 1.73 M(circle dot). The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to `label` the systems has been made here). They also accommodate the recent findings of similar to M(circle dot) masses quite naturally. Finally, we explore the existence of a subgroup around 1.25 M(circle dot), finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to the O-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.
Resumo:
We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al(x)Ga(1-x)As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed.
Resumo:
we study the one-loop quantum corrections for higher-derivative superfield theories, generalizing the approach for calculating the superfield effective potential. In particular, we calculate the effective potential for two versions of higher-derivative chiral superfield models. We point out that the equivalence of the higher-derivative theory for the chiral superfield and the one without higher derivatives but with an extended number of chiral superfields occurs only when the mass term is contained in the general Lagrangian. The presence of divergences can be taken as an indication of that equivalence. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence measurements at different temperatures have been performed to investigate the effects of confinement on the electron-phonon interaction in GaAs/AlGaAs quantum wells (QWs). A series of samples with different well widths in the range from 150 up to 750 A was analyzed. Using a fitting procedure based on the Passler-p model to describe the temperature dependence of the exciton recombination energy, we determined a fit parameter which is related to the strength of the electron-phonon interaction. On the basis of the behavior of this fit parameter as a function of the well width thickness of the samples investigated, we verified that effects of confinement on the exciton recombination energy are still present in QWs with well widths as large as 450 angstrom. Our findings also show that the electron-phonon interaction is three times stronger in GaAs bulk material than in Al(0.18)Ga(0.82)As/GaAs QWs.
Resumo:
We have studied the magnetic and power absorption properties of a series of magnetic nanoparticles (MNPs) of Fe(3)O(4) with average sizes < d > ranging from 3 to 26 rim. Heating experiments as a function of particle size revealed a strong increase in the specific power absorption (SPA) values for particles with < d > = 25-30 mn. On the other side saturation magnetization M(s) values of these MNPs remain essentially constant for particles with < d > above 10 rim, suggesting that the absorption mechanism is not determined by Ms. The largest SPA value obtained was 130 W/g, corresponding to a bimodal particle distribution with average size values of 17 and 26 nm.
Resumo:
In this paper, we analyze the action of the gravitational field on the dynamical Casimir effect. We consider a massless scalar field confined in a cuboid cavity placed in a gravitational field described by a static and diagonal metric. With one of the plane mirrors of the cavity allowed to move, we compute the average number of particles created inside the cavity by means of the Bogoliubov coefficients computed through perturbative expansions. We apply our result to the case of an oscillatory motion of the mirror, assuming a weak gravitational field described by the Schwarzschild metric. The regime of parametric amplification is analyzed in detail, demonstrating that our computed result for the mean number of particles created agrees with specific associated cases in the literature. Our results, obtained in the framework of the perturbation theory, are restricted, under resonant conditions, to a short-time limit.
Resumo:
The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a nonempirical tightening of that bound in both universal and electron number-dependent form. The test functional is PBE. Regarding both atomization energies (slightly worsened) and bond lengths (slightly improved), we find the PBE functional to be remarkably insensitive to the value of the Lieb-Oxford bound. This both rationalizes the use of the original Lieb-Oxford constant in PBE and suggests that enhancement factors more sensitive to sharpened constraints await discovery.
Resumo:
This paper reports on the effect of sonication on SAz-1 and SWy-1 montmorillonite suspensions. Changes in the size of the particles of these materials and modifications of their properties have been investigated. The variation of the particle size has been analyzed by DLS (dynamic light scattering). In all cases the clay particles show a bimodal distribution. Sonication resulted in a decrease of the larger modal diameter, as well as a reduction of its volume percentage. Simultaneously, the proportion of the smallest particles increases. After 60 min of sonication, SAz-1 presented a very broad particle size distribution with a modal diameter of 283 nm. On the other hand, the SWy-1 sonicated for 60 min presents a bimodal distribution of particles at 140 and 454 nm. Changes in the properties of the clay suspensions due to sonication were evaluated spectroscopically from dye-clay interactions, using Methylene Blue. The acidic sites present in the interlamellar region, which are responsible for dye protonation, disappeared after sonication of the clay. The changes in the size of the scattering particles and the lack of acidic sites after sonication suggest that sonication induces delamination of the clay particles. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The borohydride oxidation reaction (BOR) was studied on Pt and Au electrodes by cyclic voltammetry in dilute alkaline borohydride solutions (0.1 M NaOH + 10(-3) mol L(-1) NaBH(4)). More specifically, the electrodes were considered as either Vulcan XC72-supported Pt or Au (noted as Pt/C and Au/C, respectively) active layers or smooth Pt or Au surfaces, the latter possibly being covered by a layer of (non-metalized) Vulcan XC72 carbon powder. The BOR onset potential and the number of electrons (n(e-)) exchanged per BH(4)(-) anion (faradaic efficiency) were investigated for these electrodes, to determine whether the residence time of reaction intermediates (at the electrode surface or inside the porous layer) does influence the overall reaction pathway/completion. For the carbon-supported platinum, n(e-) strongly depends on the thickness of the active layer. While thin (ca. 0.5 mu m-thick) Pt/C active layers yield n(e-) < 4, thick layers (approximately 3 mu m) yield n(e-)approximate to 8, which can be ascribed to the sufficient residence time of the molecules formed within the active layer (H(2), by heterogeneous hydrolysis, or BOR intermediates) enabling further (near-complete) oxidation. This puts into evidence that not only the nature of the electrocatalyst is important to reach high BOR efficiency, but also the structure/thickness of the active layer. The same trend applies for Au/C active layers and for smooth Pt or Au surfaces covered with a layer of (inactive) Vulcan XC72. In addition, the BOR onset usually shifts negative when the reaction intermediates are trapped, which suggests that some of the intermediates are more easily oxidized than BH(4)(-) itself; based on literature data, BH(3)OH(-) species is a likely candidate. (C) 2011 Elsevier B.V. All rights reserved.