140 resultados para quantum Fisher information
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.
Resumo:
Considering the Wald, score, and likelihood ratio asymptotic test statistics, we analyze a multivariate null intercept errors-in-variables regression model, where the explanatory and the response variables are subject to measurement errors, and a possible structure of dependency between the measurements taken within the same individual are incorporated, representing a longitudinal structure. This model was proposed by Aoki et al. (2003b) and analyzed under the bayesian approach. In this article, considering the classical approach, we analyze asymptotic test statistics and present a simulation study to compare the behavior of the three test statistics for different sample sizes, parameter values and nominal levels of the test. Also, closed form expressions for the score function and the Fisher information matrix are presented. We consider two real numerical illustrations, the odontological data set from Hadgu and Koch (1999), and a quality control data set.
Resumo:
This paper considers an extension to the skew-normal model through the inclusion of an additional parameter which can lead to both uni- and bi-modal distributions. The paper presents various basic properties of this family of distributions and provides a stochastic representation which is useful for obtaining theoretical properties and to simulate from the distribution. Moreover, the singularity of the Fisher information matrix is investigated and maximum likelihood estimation for a random sample with no covariates is considered. The main motivation is thus to avoid using mixtures in fitting bimodal data as these are well known to be complicated to deal with, particularly because of identifiability problems. Data-based illustrations show that such model can be useful. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper we introduce a new extension for the Birnbaum-Saunder distribution based on the family of the epsilon-skew-symmetric distributions studied in Arellano-Valle et al. (J Stat Plan Inference 128(2):427-443, 2005). The extension allows generating Birnbaun-Saunders type distributions able to deal with extreme or outlying observations (Dupuis and Mills, IEEE Trans Reliab 47:88-95, 1998). Basic properties such as moments and Fisher information matrix are also studied. Results of a real data application are reported illustrating good fitting properties of the proposed model.
Resumo:
In this article, we study further properties of a skew normal distribution, called the skew-normal-Cauchy (SNC) distribution by Nadarajah and Kotz (2003). A stochastic representation is obtained which allows alternative derivations for moments, moments generating function, and skewness and kurtosis coefficients. Issues related to singularity of the Fisher information matrix are investigated.
Resumo:
We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper provides general matrix formulas for computing the score function, the (expected and observed) Fisher information and the A matrices (required for the assessment of local influence) for a quite general model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression for the generalized leverage on fixed and random effects. The matrix formulation has notational advantages, since despite the complexity of the postulated model, all general formulas are compact, clear and have nice forms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a ""loss of purity"" until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.
Resumo:
The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.
Resumo:
A fundamental interaction for electrons is their hyperfine interaction (HFI) with nuclear spins. HFI is well characterized in free atoms and molecules, and is crucial for purposes from chemical identification of atoms to trapped ion quantum computing. However, electron wave functions near atomic sites, therefore HFI, are often not accurately known in solids. Here we perform an all-electron calculation for conduction electrons in silicon and obtain reliable information on HFI. We verify the outstanding quantum spin coherence in Si, which is critical for fault-tolerant solid state quantum computing.
Resumo:
In this paper, we estimate the losses during teleportation processes requiring either two high-Q cavities or a single bimodal cavity. The estimates were carried out using the phenomenological operator approach introduced by de Almeida et al. [Phys. Rev. A 62, 033815 (2000)].
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of Jozsa's axioms. The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.