8 resultados para pregnancy toxemia
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Scrotal circumference data from 47,605 Nellore young bulls, measured at around 18 mo of age (SC18), were analyzed simultaneously with 27,924 heifer pregnancy (HP) and 80,831 stayability (STAY) records to estimate their additive genetic relationships. Additionally, the possibility that economically relevant traits measured directly in females could replace SC18 as a selection criterion was verified. Heifer pregnancy was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 d. Females were exposed to sires for the first time at about 14 mo of age (between 11 and 16 mo). Stayability was defined as whether or not a cow calved every year up to 5 yr of age, when the opportunity to breed was provided. A Bayesian linear-threshold-threshold analysis via Gibbs sampler was used to estimate the variance and covariance components of the multitrait model. Heritability estimates were 0.42 +/- 0.01, 0.53 +/- 0.03, and 0.10 +/- 0.01, for SC18, HP, and STAY, respectively. The genetic correlation estimates were 0.29 +/- 0.05, 0.19 +/- 0.05, and 0.64 +/- 0.07 between SC18 and HP, SC18 and STAY, and HP and STAY, respectively. The residual correlation estimate between HP and STAY was -0.08 +/- 0.03. The heritability values indicate the existence of considerable genetic variance for SC18 and HP traits. However, genetic correlations between SC18 and the female reproductive traits analyzed in the present study can only be considered moderate. The small residual correlation between HP and STAY suggests that environmental effects common to both traits are not major. The large heritability estimate for HP and the high genetic correlation between HP and STAY obtained in the present study confirm that EPD for HP can be used to select bulls for the production of precocious, fertile, and long-lived daughters. Moreover, SC18 could be incorporated in multitrait analysis to improve the prediction accuracy for HP genetic merit of young bulls.
Resumo:
In spite of numerous, substantial advances in equine reproduction, many stages of embryonic and fetal morphological development are poorly understood, with no apparent single source of comprehensive information. Hence, the objective of the present study was to provide a complete macroscopic and microscopic description of the equine embryo/fetus at various gestational ages. Thirty-four embryos/fetuses were aged based on their crown rump length (CRL), and submitted to macroscopic description, biometry, light and scanning microscopy, as well as the alizarin technique. All observed developmental changes were chronologically ordered and described. As examples of the main observed features, an accentuated cervical curvature was observed upon macroscopic examination in all specimens. In the nervous system, the encephalic fourth ventricle and the encephalic vesicles forebrain, midbrain, and hindbrain, were visualized from Day 19 (ovulation = Day 0). The thoracic and pelvic limbs were also visualized; their extremities gave rise to the hoof during development from Day 27. Development of other structures such as pigmented optical vesicle, liver, tail, cardiac area, lungs, and dermal vascularization started on Days 25, 25, 19, 19, 34, and 35, respectively. Light and scanning microscopy facilitated detailed examinations of several organs, e.g., heart, kidneys, lungs, and intestine, whereas the alizarin technique enabled visualization of ossification. Observations in this study contributed to the knowledge regarding equine embryogenesis, and included much detailed data from many specimens collected over a long developmental interval. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The study is based on 141 pregnant Bos indicus cows, from days 20 to 70 post-insemination. First, special attention was given to the macroscopically observable phenomena of attachment of the conceptus to the uterus, i.e. the implantation, from about days 20 to 30 post-insemination up to day 70, and placentome development by growth, vascularization and increase in the number of cotyledons opposite to the endometrial caruncles. Secondly, as for the conceptuses, semiquantitative, statistical analyses were performed of the lengths of chorio-allantois, amnion and yolk sac; and the different parts of the centre and two extremes of the yolk sacs were also analysed. Thirdly, the embryos/foetuses corresponding to their membranes were measured by their greatest length and by weight, and described by the appearance of external developmental phenomena during the investigated period like neurulation, somites, branchial arcs, brain vesicles, limb buds, C-form, pigmented eye and facial grooves. In conclusion, all the data collected in this study from days 20 to 70 of bovine pregnancy were compared extensively with corresponding data of the literature. This resulted in an `embryo/foetal age-scale`, which has extended the data in the literature by covering the first 8 to 70 days of pregnancy. This age-scale of early bovine intrauterine development provides model for studies, even when using slaughtered cows without distinct knowledge of insemination or fertilization time, through macroscopic techniques. This distinctly facilitates research into the cow, which is now being widely used as `an experimental animal` for testing new techniques of reproduction like in vitro fertilization, embryo transfer and cloning.
Resumo:
This work examined how the conceptus modulates endometrial tissue remodeling and vascular development prior to implantation in mares. A macroscopic uterine examination was completed at day 21 of pregnancy. In situ morphology revealed that the endometrium involved in encroachment is restricted to the dorsal endometrium immediately overlying the yolk sac. The amount of stromal area occupied by blood vessels and the number of endometrial glands were increased during early pregnancy. Endometrial histomorphometry as well as the endometrial mRNA abundance and immunolocalization of VEGF, VEGFR1, VEGFR2, and Ki-67 was completed at days 14 and 21 of pregnancy, at day 10 of the estrous cycle, and during estrus. No obvious differences in VEGF and VEGFR1 protein localization were detected between pregnant and cycling mares but differential staining pattern for VEGFR2 and Ki-67 was observed. VEGFR2 localized to luminal and glandular epithelium of pregnant mares, while luminal epithelium was negative in cycling mares. Ki-67 staining was weak during the luteal phase but exhibited prominent luminal epithelium staining during estrus. In pregnant mares, all endometrial layers were Ki-67 positive. Quantitative RT-PCR revealed a greater abundance of VEGF mRNA during pregnancy. VEGFR2 transcript abundance was greatest in pregnant mares on day 21. This study supports the concept that the conceptus plays an active role in directing vasculogenesis within the uterus and thereby establishing hemotrophic nutrition that supports pregnancy after implantation. Reproduction (2011) 142 593-603
Resumo:
Previous studies have demonstrated that treatment of postpartum female rats with morphine inhibits maternal behavior and stimulates foraging. Exposure to drugs of abuse may result in a progressive enhancement of their reinforcing effects. Puerperal treatment with morphine leads to reverse tolerance to this drug. The present study investigated whether repeated morphine treatment during late pregnancy may influence the effects of different morphine dosages on behavioral selection in lactating rats. Females were simultaneously exposed to pups and insects, and the choice between taking care of the pups and hunting insects was observed. Female Wistar rats were treated with morphine (3.5 mg/kg/day, subcutaneous [s.c.]) or saline for 5 days beginning on pregnancy day 17. On day 5 of lactation, animals were acutely challenged with morphine (0.5, 1.0, or 1.5 mg/kg, s.c.; MM0.5, MM1.0, and MM1.5 groups, respectively) or saline (MS group) and tested for predatory hunting and maternal behavior. Control groups were pretreated with saline and challenged with morphine (SM0.5, SM1.0, and SM1.5 groups) or saline (SS group). Animals treated with morphine during late pregnancy and acutely challenged with 1.0 mg/kg morphine (MM1.0 group) exhibited significantly decreased maternal behavior and enhanced hunting. This effect was not evident with the 0.5 mg/kg dose. The 1.5 mg/kg morphine dose decreased maternal behavior and increased hunting in both the MM1.5 group and in animals challenged with morphine after previous saline treatment (SM1.5 group). These results provide evidence of plasticity of the opioidergic role in behavioral selection during lactation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Pregnancy is accompanied by hyperestrogenism, however, the role of estrogens in the gestational-induced insulin resistance is unknown. Skeletal muscle plays a fundamental role in this resistance, where GLUT4 regulates glucose uptake. We investigated: (1) effects of oophorectomy and estradiol (E2) on insulin sensitivity and GLUT4 expression. E2 (similar to 200 nM) for 7 days decreased sensitivity, reducing similar to 30% GLUT4 mRNA and protein (P< 0.05) and plasma membrane expression in muscle; (2) the expression of ER alpha and ER beta in L6 myotubes, showing that both coexpress in the same nucleus; (3) effects of E2 on GLUT4 in L6, showing a time- and dose-dependent response. High concentration (100 nM) for 6 days reduced similar to 25% GLUT4 mRNA and protein (P < 0.05). Concluding, E2 regulates GLUT4 in muscle, and at high concentrations, such as in pregnancy, reduces GLUT4 expression and, in vivo, decreases insulin sensitivity. Thus, hyperestrogenism may be involved in the pregnancy-induced insulin resistance and/or gestational diabetes. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The incidence of melanoma is increasing worldwide. It is one of the leading cancers in pregnancy and the most common malignancy to metastasize to placenta and fetus. There are no publications about experimental models of melanoma and pregnancy. We propose a new experimental murine model to study the effects of melanoma on pregnancy and its metastatic process. We tested several doses of melanoma cells until we arrived at the optimal dose, which produced tumor growth and allowed animal survival to the end of pregnancy. Two control groups were used: control (C) and stress control (SC) and three different routes of inoculation: intravenous (IV), intraperitoneal (IP) and subcutaneous (SC). All the fetuses and placentas were examined macroscopically and microscopically. The results suggest that melanoma is a risk factor for intrauterine growth restriction but does not affect placental weight. When inoculated by the SC route, the tumor grew only in the site of implantation. The IP route produced peritoneal tumoral growth and also ovarian and uterine metastases in 60% of the cases. The IV route produced pulmonary tumors. No placental or fetal metastases were obtained, regardless of the inoculation route. The injection of melanoma cells by any route did not increase the rate of fetal resorptions. Surprisingly, animals in the IV groups had no resorptions and a significantly higher number of fetuses. This finding may indicate that tumoral factors released in the host organism to favor tumor survival may also have a pro-gestational action and consequently improve the reproductive performance of these animals.
Resumo:
P>It is known that the development of diabetic complications in human pregnancy is directly related to the severity and the duration of this pathology. In this study, we developed a model of long-term type 1 diabetes to investigate its effects on the cytoarchitecture, extracellular matrix and cell proliferation during the first adaptation phase of the myometrium for pregnancy. A single dose of alloxan was used to induce diabetes in mice prior to pregnancy. To identify the temporal effects of diabetes the mice were divided into two groups: Group D1 (females that became pregnant 90-100 days after alloxan); Group D2 (females that became pregnant 100-110 days after alloxan). Uterine samples were collected after 168 h of pregnancy and processed for light and electron microscopy. In both groups the histomorphometric evaluation showed that diabetes promoted narrowing of the myometrial muscle layers which was correlated with decreased cell proliferation demonstrated by PCNA immunodetection. In D1, diabetes increased the distance between muscle layers and promoted oedema. Contrarily, in D2 the distance between muscle layers decreased and, instead of oedema, there was a markedly deposition of collagen in the myometrium. Ultrastructural analysis showed that diabetes affects the organization of the smooth muscle cells and their myofilaments. Consistently, the immunoreaction for smooth muscle alpha-actin revealed clear disorganization of the contractile apparatus in both diabetic groups. In conclusion, the present model demonstrated that long-term diabetes promotes significant alterations in the myometrium in a time-sensitive manner. Together, these alterations indicate that diabetes impairs the first phenotypic adaptation phase of the pregnant myometrium.