23 resultados para plane wave method
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this work, a 2.0 nm nanoparticle (low limit synthesized system) is compared to possible simplified models: passivated clusters, small (1.3 nm) nanoparticles and sets of plane surfaces. Our density functional theory results suggest that even when geometric aspects are properly described by the simplifications considered, electronic properties might be very different, especially when edge atoms are not properly taken into account in the nanoparticle`s modeling. In addition, we propose a protocol that might help future theoretical descriptions of nanoparticles.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
By using the time-differential perturbed angular correlation technique, the electric field gradients (EFG) at (181)Hf/(181)Ta and (111)In/(111)Cd probe sites in the MoSi(2)-type compound Ti(2)Ag have been measured as a function of temperature in the range from 24 to 1073 K. Ab initio EFG calculations have been performed within the framework of density functional theory using the full-potential augmented plane wave + local orbitals method as implemented in the WIEN2k package. These calculations allowed assignments of the probe lattice sites. For Ta, a single well-defined EFG with very weak temperature dependence was established and attributed to the [4(e)4mm] Ti site. For (111)Cd probes, two of the three measured EFGs are well defined and correlated with substitutional lattice sites, i.e. both the [4(e)4mm] Ti site and the [2(a)4/mmm] Ag site.
Resumo:
We present theoretical photoluminescence (PL) spectra of undoped and p-doped Al(x)In(1-xy)Ga(y)N/Al(X)In(1) (X) (Y)Ga(Y)N double quantum wells (DQWs). The calculations were performed within the k.p method by means of solving a full eight-band Kane Hamiltonian together with the Poisson equation in a plane wave representation, including exchange-correlation effects within the local density approximation. Strain effects due to the lattice mismatch are also taken into account. We show the calculated PL spectra, analyzing the blue and red-shifts in energy as one varies the spike and the well widths, as well as the acceptor doping concentration. We found a transition between a regime of isolated quantum wells and that of interacting DQWs. Since there are few studies of optical properties of quantum wells based on nitride quaternary alloys, the results reported here will provide guidelines for the interpretation of forthcoming experiments. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study reports the results of ab initio electronic and optical calculations for pure socialite crystal using the linear augmented plane wave (LAPW) method within density functional theory (DFT). The calculated electronic structure revealed predominantly orbital characters of the valence band and the conduction band, and enabled us to determine the type and the value of the fundamental gap of the compound. The imaginary part of the dielectric tensor, extinction coefficient and refraction index were calculated as functions of the incident radiation wavelength. It is shown that the O 2p states and Na 3s states play the major role in optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 40 and 250 nm. Furthermore, we concluded that the material does not absorb radiation in the visible range. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.
Resumo:
In this work the interaction of cyclopentene with a set of InP(001) surfaces is investigated by means of the density functional theory. We propose a simple approach for evaluating the surface strain and based on it we have found a linear relation between bond and strain energies and the adsorption energy. Our results also indicate that the higher the bond energy, the more disperse the charge distribution is around the adsorption site associated to the high occupied state, a key feature that characterizes the adsorption process. Different adsorption coverages are used to evaluate the proposed equation. Our results suggest that the proposed approach might be extended to other systems where the interaction of the semiconductor surface and the molecule is restricted to first neighbor sites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The quadrupolar hyperfine interactions of in-diffused (111)In -> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms. The effects of the size of the supercell and relaxation around the oversized In and Cd probe atoms were investigated in detail.
Resumo:
In this work we employ the state-of-the-art pseudopotential method, within a generalized gradient approximation to the density functional theory, combined with a recently developed method for the calculation of HREELS spectra to study a series of different proposed models for carbon incorporation on the silicon (001) surface. A fully discussion on the geometry, energetics and specially the comparison between experimental and theoretical STM images and electron energy loss spectra indicate that the Si(100)-c(4 x 4) is probably induced by Si-C surface dinners, in agreement with recent experimental findings. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4 + 2] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.
Resumo:
Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.
Resumo:
Weakly nonlinear interactions among equatorial waves have been explored in this paper using the adiabatic version of the equatorial beta-plane primitive equations in isobaric coordinates. Assuming rigid lid vertical boundary conditions, the conditions imposed at the surface and at the top of the troposphere were expanded in a Taylor series around two isobaric surfaces in an approach similar to that used in the theory of surface-gravity waves in deep water and capillary-gravity waves. By adopting the asymptotic method of multiple time scales, the equatorial Rossby, mixed Rossby-gravity, inertio-gravity, and Kelvin waves, as well as their vertical structures, were obtained as leading-order solutions. These waves were shown to interact resonantly in a triad configuration at the O(epsilon) approximation. The resonant triads whose wave components satisfy a resonance condition for their vertical structures were found to have the most significant interactions, although this condition is not excluding, unlike the resonant conditions for the zonal wavenumbers and meridional modes. Thus, the analysis has focused on such resonant triads. In general, it was found that for these resonant triads satisfying the resonance condition in the vertical direction, the wave with the highest absolute frequency always acts as an energy source (or sink) for the remaining triad components, as usually occurs in several other physical problems in fluid dynamics. In addition, the zonally symmetric geostrophic modes act as catalyst modes for the energy exchanges between two dispersive waves in a resonant triad. The integration of the reduced asymptotic equations for a single resonant triad shows that, for the initial mode amplitudes characterizing realistic magnitudes of atmospheric flow perturbations, the modes in general exchange energy on low-frequency (intraseasonal and/or even longer) time scales, with the interaction period being dependent upon the initial mode amplitudes. Potential future applications of the present theory to the real atmosphere with the inclusion of diabatic forcing, dissipation, and a more realistic background state are also discussed.
Resumo:
In this paper an analytical solution of the temperature of an opaque material containing two overlapping and parallel subsurface cylinders, illuminated by a modulated light beam, is presented. The method is based on the expansion of plane and cylindrical thermal waves in series of Bessel and Hankel functions. This model is addressed to the study of heat propagation in composite materials with interconnection between inclusions, as is the case of inverse opals and fiber reinforced composites. Measurements on calibrated samples using lock-in infrared thermography confirm the validity of the model.
Resumo:
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Resumo:
Here we investigate the contribution of surface Alfven wave damping to the heating of the solar wind in minima conditions. These waves are present in the regions of strong inhomogeneities in density or magnetic field (e.g., the border between open and closed magnetic field lines). Using a three-dimensional (3D) magnetohydrodynamics (MHD) model, we calculate the surface Alfven wave damping contribution between 1 and 4 R(circle dot) (solar radii), the region of interest for both acceleration and coronal heating. We consider waves with frequencies lower than those that are damped in the chromosphere and on the order of those dominating the heliosphere: 3 x 10(-6) to 10(-1) Hz. In the region between open and closed field lines, within a few R(circle dot) of the surface, no other major source of damping has been suggested for the low frequency waves we consider here. This work is the first to study surface Alfven waves in a 3D environment without assuming a priori a geometry of field lines or magnetic and density profiles. We demonstrate that projection effects from the plane of the sky to 3D are significant in the calculation of field line expansion. We determine that waves with frequencies >2.8 x 10(-4) Hz are damped between 1 and 4 R(circle dot). In quiet-Sun regions, surface Alfven waves are damped at further distances compared to active regions, thus carrying additional wave energy into the corona. We compare the surface Alfven wave contribution to the heating by a variable polytropic index and find it as an order of magnitude larger than needed for quiet-Sun regions. For active regions, the contribution to the heating is 20%. As it has been argued that a variable gamma acts as turbulence, our results indicate that surface Alfven wave damping is comparable to turbulence in the lower corona. This damping mechanism should be included self-consistently as an energy driver for the wind in global MHD models.