11 resultados para phospholipase A

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine acts in the nucleus tractus solitarii (NTS), one of the main brain sites related to cardiovascular control. In the present study we show that A(1) adenosine receptor (A(1R)) activation promotes an increase on alpha(2)-adrenoceptor (Alpha(2R)) binding in brainstem cell culture from newborn rats. We investigated the intracellular cascade involved in such modulatory process using different intracellular signaling molecule inhibitors as well as calcium chelators. Phospholipase C, protein kinase Ca(2+)-dependent, IP(3) receptor and intracellular calcium were shown to participate in A(1R)/Alpha(2R) interaction. In conclusion, this result might be important to understand the role of adenosine within the NTS regarding autonomic cardiovascular control. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NF kappa B and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NF kappa B and AP-1. Activation of NF kappa B and AP-1 depended on phospholipase C and protein kinase A. Activation of NF kappa B also depended on protein kinase C. Isoprenaline activated both NF kappa B and AP-1, and phenylephrine activated NF kappa B and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A joint transcriptomic and proteomic approach employing two-dimensional electrophoresis, liquid chromatography and mass spectrometry was carried out to identify peptides and proteins expressed by the venom gland of the snake Bothrops insularis, an endemic species of Queimada Grande Island, Brazil. Four protein families were mainly represented in processed spots, namely metalloproteinase, serine proteinase, phospholipase A(2) and lectin. Other represented families were growth factors, the developmental protein G10, a disintegrin and putative novel bradykinin-potentiating peptides. The enzymes were present in several isoforms. Most of the experimental data agreed with predicted values for isoelectric point and M(r) of proteins found in the transcriptome of the venom gland. The results also support the existence of posttranslational modifications and of proteolytic processing of precursor molecules which could lead to diverse multifunctional proteins. This study provides a preliminary reference map for proteins and peptides present in Bothrops insularis whole venom establishing the basis for comparative studies of other venom proteomes which could help the search for new drugs and the improvement of venom therapeutics. Altogether, our data point to the influence of transcriptional and post-translational events on the final venom composition and stress the need for a multivariate approach to snake venomics studies. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropathic pain is an important clinical problem and it is usually resistant to the current therapy. We have recently characterized a novel analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in an experimental model of neuropathic pain induced in rats by chronic constriction, of sciatic nerve. The effect of the peptide was compared to that induced by the crude venom, which confirmed that crotalphine is responsible for the antinociceptive effect of the crotalid venom on neuropathic pain. For characterization of neuropathic pain, the presence of hyperalgesia, allodynia and spontaneous pain was assessed at different times after nerve constriction. These phenomena were detected 24 h after surgery and persisted at least for 14 days. The pharmacological treatments were performed on day 14 after surgery. Crotalphine (0.2-5 mu g/kg) and the crude venom (400-1600 mu g/kg) administered p.o. inhibited hyperalgesia, allodynia and spontaneous pain induced by nerve constriction. The antinociceptive effect of the peptide and crude venom was long lasting, since it was detected up to 3 days after treatment. Intraplantar injection of naloxone (1 mu g/paw) blocked the antinociceptive effect, indicating the involvement of opioid receptors in this phenomenon. Gabapentin (200 mg/kg, p.o.), and morphine (5 mg/kg, s.c.), used as positive controls, blocked hyperalgesia and partially inhibited allodynia induced by nerve constriction. These data indicate that crotalphine induces a potent and long lasting opioid antinociceptive effect in neuropathic pain that surpasses that observed with standard analgesic drugs. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the effects of trans-MUFA, elaidic acid (EA; 18 : 1-9t) and vaccenic acid (VA; 18 : 1-11t) on rat neutrophil functions were compared with those of cis-monounsaturated oleic acid (OA) (18 : 1-9c) and saturated stearic acid (SA; 18 : 0) (10-150 mu M). Trans-fatty acids enhanced neutrophil phagocytic capacity, superoxide (O(2)(center dot-)) and hydrogen peroxide production, and candidacidal activity. The same effects were observed for OA. Cells treated with trans-MUFA showed reduced production of NO(center dot), whereas those treated with OA showed an increase in production. Treatment with SA did not provoke significant effect on the parameters investigated. The increase in O(2)(center dot-) production induced by MUFA was not observed when diphenyleneiodonium, an NADPH oxidase inhibitor, was added to the medium. This finding suggests that MUFA stimulate neutrophil NADPH oxidase activity. The addition of 3-[1-[3-(dimethylamino)propyl]-1H-indol-3-yl]-4-(1H-inclol-3-yl)-1H-pyrrole-2,5-dione, a protein kinase C (PKC) inhibitor, and wortmannin, a phosphatidylinositol-3 kinase (PI3K) inhibitor, did not affect O(2)(center dot-) production induced by MUFA. Therefore, the mechanisms by which MUFA stimulate NADPH oxidase are not dependent on PKC and do not seem to involve PI3K. Experiments using Zn(2+), an inhibitor of NADPH oxidase H(+) channel, indicated that MUFA activate the NADPH oxidase complex in rat neutrophil due to opening of H(+) channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom and modulates immune and inflammatory responses, interfering with the activity of leukocytes. In the present work, the effects of crotoxin on the number of blood and lymphatic leukocytes and on lymph nodes and spleen lymphocytes population were investigated. The toxin s.c. administered to male Wistar rats, decreases the number of lymphocytes in blood and lymph circulation and increases the content of B and T-lymphocytes in lymph nodes. These effects were detected 1-2 h after treatment. The crotoxin molecule is composed of two subunits, an acidic non-toxic polypeptide, named crotapotin and a toxic basic phospholipase A(2) (PLA(2)). PLA(2), but not crotapotin, decreased the number of circulating blood and lymph lymphocytes. Crotoxin promotes leukocyte adherence to endothelial cells of blood microcirculation and to lymph node high endothelial venules, which might contribute to the drop in the number of circulating lymphocytes. Crotoxin increases expression of the adhesion molecule LFA-1 in lymphocytes. The changes in the expression of the adhesion molecule might contribute, at least in part, for the increased leukocyte adhesion to endothelium. Zileuton, a 5-lipoxygenase inhibitor, blocked the decrease in the number of circulating leukocytes induced by crotoxin and also abolished the changes observed in leukocyte-endothelial interactions, suggesting the involvement of lipoxygenase-derived mediators in the effects of the toxin. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lonomia obliqua caterpillar bristle extract induces hemolysis in vitro on washed human and rat erythrocytes, in either the absence or presence of exogenous lecithin. In the former condition, phospholipases A(2) are key enzymes involved in hemolysis. However, the mechanism whereby this extract causes direct hemolysis is not known. Thus, the aim of this study was to investigate the hemolytic mechanism of the crude extract of the caterpillar L obliqua on human erythrocytes in the absence of lecithin. The extract significantly increased the erythrocyte osmotic fragility and promoted the removal of glycophorins A and C, and band 3 from the erythrocyte membrane. The use of Ca(2+) and Mg(2+) ions significantly potentiated glycoprotein removal, remarkably of erythrocyte band 3. The composition of fatty acids was analyzed by HPLC in both L obliqua caterpillar bristle extract and human erythrocyte membranes incubated with the extract. The levels of unsaturated fatty acids were remarkably augmented in erythrocytes incubated with the extract than in control erythrocytes, modifying thereby the saturated/unsaturated fatty acid ratio. Altogether, evidence is provided here that the interplay of at least three mechanisms of action accounts for the direct activity of the bristle extract on erythrocyte membrane, leading to hemolysis: the removal of glycoproteins and band 3; the insertion of fatty acids; and the action of phospholipases. Such mechanisms might affect erythrocyte flexibility and deformability, which may induce hemolysis by increasing erythrocyte fragility. However, whether the direct hemolytic activity of L obliqua caterpillar is the major cause of intravascular hemolysis during envenomation still needs further investigation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Islet neogenesis associated protein (INGAP) increases islet mass and insulin secretion in neonatal and adult rat islets. lit the Present Study, we measured the short- and long-term effects of INGAP-PP (a pentadecapeptide having the 104-118 amino acid sequence of INGAP) upon islet protein expression and phosphorylation of components of the PI3K, MAPK and cholinergic pathways, and on insulin secretion. Short-term exposure of neonatal islets to INGAP-PP (90 s, 5, 15, and 30 min) significantly increased Akt1(-Ser473) and MAPK3/1(-Thr202/Tyr204) phosphorylation and INGAP-PP also acutely increased insulin secretion from islets perifused with 2 and 20 mM glucose. Islets cultured for 4 days in the presence of INGAP-PP showed an increased expression of Akt1, Frap1, and Mapk1 mRNAs as well as of the muscarinic M3 receptor subtype, and phospholipase C (PLC)-beta 2 proteins. These islets also showed increased Akt1 and MAPK3/1 protein phosphorylation. Brief exposure of INGAP-P-treated islets to carbachol (Cch) significantly increased P70S6K(-Thr389) and MAPK3/1 phosphorylation and these islets released more insulin when challenged with Cch that was prevented by the M3 receptor antagonist 4-DAMP in a concentration-dependent manner. In conclusion, these data indicate that short- and long-term exposure to INGAP-PP significantly affects the expression and the phosphorylation of proteins involved in islet PI3K and MAPK signaling pathways. The observations of INGAPP-PP-stimulated up-regulation of cholinergic M3 receptors and PLC-beta 2 proteins, enhanced P70S6K and MAIIK3/1 phosphorylation and Cch-induced insulin secretion suggest a participation of the cholinergic pathway in INGAP-PP-mediated effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional venom immunotherapy uses injections of whole bee venom in buffer or adsorbed in Al (OH)(3) in an expensive, time-consuming way. New strategies to improve the safety and efficacy of this treatment with a reduction of injections would, therefore, be of general interest. It would improve patient compliance and provide socio-economic benefits. Liposomes have a long tradition in drug delivery because they increase the therapeutic index and avoid drug degradation and secondary effects. However, bee venom melittin (Mel) and phospholipase (PLA(2)) destroy the phospholipid membranes. Our central idea was to inhibit the PLA(2) and Mel activities through histidine alkylation and or tryptophan oxidation (with pbb, para-bromo-phenacyl bromide, and/or NBSN-bromosuccinimide, respectively) to make their encapsulations possible within stabilized liposomes. We strongly believe that this formulation will be nontoxic but immunogenic. In this paper, we present the whole bee venom conformation characterization during and after chemical modification and after interaction with liposome by ultraviolet, circular dichroism, and fluorescence spectroscopies. The PLA(2) and Mel activities were, measured indirectly by changes in turbidity at 400(nm), rhodamine leak-out, and hemolysis. The native whole bee venom (BV) presented 78.06% of alpha-helical content. The alkylation (A-BV) and succynilation (S-BV) of BV increased 0.44 and 0.20% of its alpha-helical content. The double-modified venom (S-A-BV) had a 0.74% increase of alpha-helical content. The BV chemical modification induced another change on protein conformations observed by Trp that became buried with respect to the native whole BV. It was demonstrated that the liposomal membranes must contain pbb (SPC:Cho:pbb, 26:7:1) as a component to protect them from aggregation and/or fusion. The membranes containing pbb maintained the same turbidity (100%) after incubation with modified venom, in contrast with pbb-free membranes that showed a 15% size decrease. This size decrease was interpreted as membrane degradation and was corroborated by a 50% rhodamine leak-out. Another fact that confirmed our interpretation was the observed 100% inhibition of the hemolytic activity after venom modification with pbb and NBS (S-A-BV). When S-A-BV interacted with liposomes, other protein conformational changes were observed and characterized by the increase of 1.93% on S-A-BV alpha-helical content and the presence of tryptophan residues in a more hydrophobic environment. In other words, the S-A-BV interacted with liposomal membranes, but this interaction was not effective to cause aggregation, leak-out, or fusion. A stable formulation composed by S-A-BV encapsulated within liposomes composed by SPC:Cho:pbb, at a ratio of 26:7:1, was devised. Large unilamellar vesicles of 202.5 nm with a negative surface charge (-24.29 mV) encapsulated 95% of S-A-BV. This formulation can, now, be assayed on VIT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prion protein (PrP(C)) is highly expressed in the nervous system, and its abnormal conformer is associated with prion diseases. PrP(C) is anchored to cell membranes by glycosylphosphatidylinositol, and transmembrane proteins are likely required for PrP(C)-mediated intracellular signaling. Binding of laminin (Ln) to PrP(C) modulates neuronal plasticity and memory. We addressed signaling pathways triggered by PrP(C)-Ln interaction in order to identify transmembrane proteins involved in the transduction of PrP(C)-Ln signals. The Ln gamma 1-chain peptide, which contains the Ln binding site for PrP(C), induced neuritogenesis through activation of phospholipase C (PLC), Ca(2+) mobilization from intracellular stores, and protein kinase C and extracellular signal-regulated kinase (ERK1/2) activation in primary cultures of neurons from wild-type, but not PrP(C)-null mice. Phage display, coimmunoprecipitation, and colocalization experiments showed that group I metabotropic glutamate receptors (mGluR1/5) associate with PrP(C). Expression of either mGluR1 or mGluR5 in HEK293 cells reconstituted the signaling pathways mediated by PrP(C)-Ln gamma 1 peptide interaction. Specific inhibitors of these receptors impaired PrP(C)-Ln gamma 1 peptide-induced signaling and neuritogenesis. These data show that group I mGluRs are involved in the transduction of cellular signals triggered by PrP(C)-Ln, and they support the notion that PrP(C) participates in the assembly of multiprotein complexes with physiological functions on neurons.-Beraldo, F. H., Arantes, C. P., Santos, T. G., Machado, C. F., Roffe, M., Hajj, G. N., Lee, K. S., Magalhaes, A. C., Caetano, F. A., Mancini, G. L., Lopes, M. H., Americo, T. A., Magdesian, M. H., Ferguson, S. S. G., Linden, R., Prado, M. A. M., Martins, V. R. Metabotropic glutamate receptors trans-duce signals for neurite outgrowth after binding of the prion protein to laminin gamma 1 chain. FASEB J. 25, 265-279 (2011). www.fasebj.org