153 resultados para organic-inorganic hybrid
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Organic-inorganic hybrid materials can be prepared dispersing organic species into well-defined inorganic nanoblocks. This paper describes the immobilization of natural dyes from the extract of the Brazilian acai-fruit into two types of layered hexaniobate precursors derived from H(2)K(2)Nb(6)O(17): (i) colloidal dispersion of niobate exfoliated nanoparticles and (ii) niobate pre-intercalated with tetraethylammonium cations (TEA(+)). The restacking of exfoliated particles in the presence of acai anthocyanins promotes their intercalation and produces stacked layers showing large basal spacing (ca. 50 angstrom). The TEA(+) pre-intercalated niobate provides particles with lower content of dye species than the exfoliated precursor but with higher degree of organization and regularity according to X-ray diffraction data and images obtained by electron microscopies. Vibrational (FTIR and Raman) and (13)C NMR spectroscopies indicate the presence of flavylium cations in the hybrid materials and spectral profiles characteristic of glycosylated anthocyanidins. According to thermal analysis results, the purplish hybrids materials are more stable than the free acai-dyes. One hybrid sample was heated under air up to 170 degrees C and maintained at this temperature for 240 min. No weight loss events were observed and the sample retained its original color, indicating that the intercalation of anthocyanin into hexaniobate increases its thermal stability. Considering the structural, chemical, optical and thermal properties of the synthesized hybrid materials, they might be good candidates to be investigated for future specialized applications.
Resumo:
This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Vanadyl phosphate and its hybrid compounds have proven to undergo electrochemical intercalation and de-intercalation of lithium ions, which enables its use as cathode material for Li ion rechargeable batteries. In this context, vanadyl phosphate di-hydrate/polyaniline derivatives hybrid films were synthesized via the exfoliation and reconstruction approach in order to evaluate their potential use as cathode in ion lithium batteries. X-ray diffraction patterns indicate that the lamellar structure of the inorganic matrix is maintained, consistent with the topotactic process. In the scanning electron micrographs, hybrid films exhibit rough surface consisting of warped and cracked crystallites, quite different from vanadyl phosphate di-hydrate square platelets crystallites. Electrochemical evaluation using cyclic voltammetry and charge-discharge galvanostatic techniques shows small differences between the charge and the discharge curves, indicating an irreversibility of the hybrid systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polysilsesquioxanes containing methacrylate pendant groups were prepared by the sol-gel process through hydrolysis and condensation of (3-methacryloxypropyl)trimethoxysilane (MPTS) dissolved in a methanol/methyl methacrylate (MMA) mixture. The effects of different water, MMA, and methanol contents, as well as of pH, on the nanoscopic and local structures of the system, at advanced stages of the condensation reaction, were studied by small-angle X-ray scattering (SAXS) and (29)Si nuclear magnetic resonance (NMR) spectroscopy, respectively. SAXS results indicate that the nanoscopic features of the hybrid sol could be described by a hierarchical model composed of two levels, namely (i) silsesquioxane (SSQO) nanoparticles Surrounded by the methacrylate pendant groups and the methanol/MMA mixture. and (ii) aggregation zones or islands containing correlated SSQO nanoparticles, embedded in the liquid medium. The (29)Si NMR results Show that the inner Structures of SSQO nanoparticles produced at pH 1 and 3 were built Up of polyhedral structures. mainly cagelike octamers and small linear oligomers, respectively. Irrespective of MMA and methanol contents, for a [H(2)O]/[MPTS] ratio higher than or equal to 1, the SSQO nailoparticles produced at pH I exhibit an average condensation degree (CD approximate to 69-87%) and average radius of gyration (R(g) approximate to 2.5 angstrom) larger than those produced at pH 3 (CD approximate to 48-67% and R(g) approximate to 1.5 angstrom). Methanol appears to act as a redispersion agent, by decreasing the number of particles inside the aggregation zones, while the addition of MMA induces a swelling of the aggregation zones.
Resumo:
Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO(2), Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol-gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO(2) as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH(center dot+)) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic-organic hybrid material that can be used to promote the oxidation of biomolecules was obtained. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Titanate nanotubes (TiNTs) were obtained by hydrothermal treatment of anatase powder in aqueous NaOH solution and then modified with 2,9,16,23-tertracarboxyl phthalocyanine copper(H) (CuPc). This hybrid organic inorganic nanoscopic system was characterized by X-ray diffraction, microscopy, and spectroscopy. Transmission electron microscopy (TEM) images of pure and modified TiNTs revealed multiwall structures with an average outer diameter of 9 nm and a length of several hundred nanometers. The tubular morphology of the TiNTs was covered with CuPc-film. The amount of CuPc adsorbed onto the TiNTs was quantified by electron paramagnetic resonance (EPR). Using the same technique and spin-trapping methodology, the photogeneration of reactive oxygen species (ROS) from the TiNTs was systematically investigated. A drastic quenching of photoactivity was observed in the CuPc/TiNT hybrid system. Electron transfer from excited CuPc states to the TiNT conduction band followed by electron recombination may be the cause of this quenching.
Resumo:
New organic/inorganic (O/I) hybrid assemblies based on Layered Double Hydroxide (LDH) with polyamide amine dendrimer (PAMAM, generation -0.5 and generation +0.5) were prepared by two different routes using either the direct coprecipitation at constant pH or the anion exchange procedure in double surfactant S(+)S(-) phases. The obtained materials were characterized by means of powder X-ray diffraction, thermal gravimetric analysis associated with mass spectrometry, and Fourier-transform infrared spectroscopy. X-ray powder diffraction pattern of the O/I LDH assembly exhibit characteristic profiles of LDH-based materials with basal spacing depending on the nature of the dendrimer. Indeed, for both synthetic procedures, interleaved PAMAM -0.5 gives rise to an interlayer space in agreement with a perpendicular molecular arrangement against the layer of the host structure. For PAMAM+0.5, considering its spherical dimension, a much smaller basal spacing was observed. This observation was interpreted as shrinkage of the molecule to accommodate the interlayer LDH gap, which was rendered possible by the bond angle twisting within PAMAM-0.5. FTIR spectra confirm the presence of both moieties inside both Zn(2)Al/PAMAM G-0.5 and Zn(2)Al/PAMAM G+0.5 assemblies. Finally, thermal analysis associated with mass spectrometry confirm this composition, and in situ temperature XRD data reveal that the highly constrained arrangement for the generation +0.5 is not accompanied by a gain in thermal structural stability; in fact, the assembly prepared from PAMAM -0.5 is more stable. Both O/I PAMAM LDH assemblies constitute well-defined materials which are candidate for catalytic applications.
Resumo:
The numbers of culturable diazotrophic endophytic bacteria (CDEB) from roots stems and leaves of sugarcane submitted to organic inorganic or no fertilization were compared In order to determine the size of the N(2) fixing populations the Most Probable Number technique (MPN) was used The quantification of diazotrophic bacteria by using the acetylene reduction assay (ARA) was more accurate than observing the bacterial growth in the vials to confirm N(2) fixing capability the detection of gene nifH was performed on a sample of 105 Isolated bacteria The production of extracellular enzymes involved in the penetration of the plants by the bacteria was also studied The results showed that organic fertilization enhances the number of CDEB when compared with conventional fertilization used throughout the growing season The maximum number of bacteria was detected in the roots Roots and stems presented the greatest number of CDEB in the middle of the cropping season and in leaves numbers varied according to the treatment Using two pairs of primers and two different methods the nifH gene was found in 104 of the 105 tested isolates Larger amounts of pectinase were released by isolates from sugarcane treated with conventional fertilizers (66%) whereas larger amounts of cellulase were released by strains isolated from sugarcane treated with organic fertilizers (80%) (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Two hybrid materials based on dodecatungstophosphoric acid (HPW) dispersed in ormosils modified with 3-aminopropiltrietoxysilane (APTS) or with N-(3-(trimethoxysilyl)-propyl)-ethylene-diamine (TSPEN) show reversible photochromic response induced by irradiation in the 200-390 nm UV range. A set of solid-state nuclear magnetic resonance (NMR) techniques was used to analyze the structural properties of the main components of these hybrids (the HPW polyanion, the inorganic matrix, and the organic functionalities). For the ormosils, the use of (29)Si NMR, {(1)H}-(29)Si cross-polarization, and {(1)H}-(29)Si HETCOR revealed a homogeneous distribution of silicon species Q ``, T(2), and T(3) for the APTS hybrid, contrasting with the separation of T(3) species in the TSPEN hybrid. The combination of (31)P NMR, {(1)H}-(31)P cross-polarization and (31)P-{(1)H} spin-echo double resonance (SEDOR) revealed the dispersion of the HPW ions in the ormosil, occupying sites with a high number of close protons (>50). Differences in the molecular dynamics at room temperature, inferred from SEDOR experiments, indicate a state of restricted mobility of the HPW ion and the surrounding molecular groups in the TSPEN hybrid. This behavior is consistent with the presence of more amino groups in the TSPEN, acting as chelating groups to the HPW ion. This hybrid, with the strong chelate interaction of the diamine group, shows the most intense photochromic response, in agreement with the charge transfer models proposed to explain the photochromic effect. Electronic reflectance spectroscopy in irradiated samples revealed the presence of one-electron and two-electron reduced polyanions. The one-electron reduced species could be detected also by (31)P NMR spectroscopy immediately after UV irradiation.
Resumo:
The aim of this work is the production and preliminary characterization of adsorbent new materials useful for sensor development. A new plasma chamber was simulated and designed in order to obtain multiple layers and/or composites in a single step. Plasma deposited organic fluorocompound and hexamethyldisilazane (HMDS) thin films were produced and tested as adsorbent layers. Chemical characterization used ellipsometry, Raman. infrared and X-ray photoelectron spectroscopy. Hydrophobic and oleophobic character were determined by contact angle measurements. Adsorption characteristics were evaluated using quartz crystal microbalance. Not only HMDS but also the fluorocompound can polymerize but intermixing and a double layer are only obtained in very narrow conditions. The films are adsorbent and mildly hydrophobic. Films deposited on a microchromatographic column can be used on sample pretreatment to remove and/or preconcentrate volatile organic Compounds. Therefore, with this approach it is possible to obtain films with different monomers on double layer or composites, with organic/inorganic materials or particles and use them on sample pretreatment for chemical analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work reports on the synthesis and characterization of a new complex of Eu(3+) with the 3-hydroxypicolinamide ligand (Hhpa). Here we present an approach for obtaining bis[2-carbamoyl(kappa O)pyridin-3-olato(kappa O`)] lanthanide complexes, which were characterized through elemental analysis, thermal analysis, infrared and photoluminescence spectroscopies (emission, excitation, luminescence lifetimes, quantum efficiencies, Judd-Ofelt parameters and quantum yields). Although hpa can act as a bidentate ligand in different conformations, the results attest for the occurrence of a unique coordination site of low symmetry for the Eu(3+) ions, in which two anionic hpa ligands coordinate the cations through an O/O chelating system. The phosphorescence of the synthesized gadolinium complex provides the energy of the triplet state, which is determined to be at 20,830 cm(-1) over the ground state. This makes the Hhpa ligand very adequate for sensitizing the Eu(3+) luminescence, which leads to a very efficient antenna effect and opens a wide range of applications for the complex in light emitting organic-inorganic devices.
Resumo:
In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.
Resumo:
Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.
Resumo:
This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We investigate from first principles the electronic and transport properties of hybrid organic/silicon interfaces of relevance to molecular electronics. We focus on conjugated molecules bonded to hydrogenated Si through hydroxyl or thiol groups. The electronic structure of the systems is addressed within density functional theory, and the electron transport across the interface is directly evaluated within the Landauer approach. The microscopic effects of molecule-substrate bonding on the transport efficiency are explicitly analyzed, and the oxygen-bonded interface is identified as a candidate system when preferential hole transfer is needed.