43 resultados para nuclear magnetic resonance (NMR)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impedance spectroscopy and nuclear magnetic resonance (NMR) were used to investigate the mobility of water molecules located in the interlayer space of H(+) - exchanged bentonite clay. The conductivity obtained by ac measurements was 1.25 x 10(-4) S/cm at 298 K. Proton ((1)H) lineshapes and spin-lattice relaxation times were measured as a function of temperature over the temperature range 130-320 K. The NMR experiments exhibit the qualitative features associated with the proton motion, namely the presence of a (1)H NMR line narrowing and a well-defined spin-lattice relaxation rate maximum. The temperature dependence of the proton spin-lattice relaxation rates was analyzed with the spectral density function appropriate for proton dynamics in a two-dimensional system. The self-diffusion coefficient estimated from our NMR data, D similar to 2 x 10(-7) cm(2)/s at 300 K, is consistent with those reported for exchanged montmorillonite clay hydrates studied by NMR and quasi-elastic neutron scattering (QNS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Nuclear magnetic resonance studies of banana fragments during ripening show an increase on the water transverse relaxation time (T(2)) and a decrease in water self-diffusion coefficient (D). As T(2) and D are normally directly correlated, we studied these two properties in intact bananas during ripening, in an attempt to rule out the effect of injury on the apparent discrepancies in the behavior of T(2) and D. RESULTS: The results show that injury in bananas causes a decrease in T(2) of the water in vacuoles (T(2vac)). They also show that T(2vac) increased and D decreased during ripening, ruling out the injury effect. To explain the apparent discrepancies, we propose a new hypothesis for the increase in T(2) values, based on the reduction of Fe(3+) ions to Fe(2+) by galacturonic acid, produced by the hydrolysis of pectin and a decrease in internal oxygen concentration during ripening. CONCLUSION: As injury alters T(2) values it is necessary to use intact bananas to study relaxation times during ripening. The novel interpretation for the increase in T(2vac) based on reduction of Fe(+3) and O(2) concentration is an alternative mechanism to that based on the hydrolysis of starch in amyloplasts. (C) 2010 Society of Chemical Industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated linoleic acids (CLAs) are a group of linoleic acid isomers that are naturally found in food products originating from ruminants (meat and dairy). These acids have received special attention in recent years due to their potential human health benefits. Research efforts have been proposed to increase the CLA content in beef to improve public health. However, because there are more than 30 million beef cattle used each year by the American food industry, it will be necessary to ensure their content in a large number of samples. Therefore, it is important to have an inexpensive and rapid analytical method to measure CLA content in food products. Because gas chromatography (GC), a current popular method for measuring CLAs, is slow, this paper describes a nuclear magnetic resonance spectroscopy ((1)H NMR) method that is potentially >10 times faster than the GC method. Analyses show a correlation coefficient of 0.97, indicating the capacity of NMR to quantify the CLA content in beef samples. Furthermore, the method proposed herein is simple and does not require sophisticated sample preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work report results from proton nuclear magnetic resonance (NMR), continuous-wave (CW-EPR) and pulsed electron paramagnetic resonance (P-EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing acetic acid. cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 2 x 10(-5) S/cm was obtained at room temperature for samples prepared with 33 wt% of acetic acid. Proton ((1)H) line shapes and spin-lattice relaxation times were measured as a function of temperature. The NMR results show that the proton mobility is dependent on acetic acid content in the plasticized polymer gel electrolytes. The CW-EPR spectra, which were carried out in samples doped with copper perchlorate, indicate the presence of the paramagnetic Cu(2+) ions in axially distorted sites. The P-EPR technique, known as electron spin echo envelope modulation (ESEEM), was employed to show the involvement of both, hydrogen and nitrogen atoms, in the copper complexation of the gel electrolyte. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local structure of an ion-conducting glass with nominal composition 50B(2)O(3)-10PbO-40LiF has been investigated by complementary (7)Li, (11)B, (19)F, and (207)Pb single- and double-resonance experiments. The results give insight into the structural role of the lithium fluoride additive in borate glasses: (1) LiF is seen to actively participate in the network transformation process contributing to the conversion of three- into four-coordinate boron units, as shown by (11)B single-resonance as well as by (11)B{(19)F} and (19)F{(11)B} double-resonance experiments. (2) (19)F signal quantification experiments suggest substantial fluoride loss, presumably caused by formation of volatile BF(3). A part of the fluoride remains in the dopant role, possibly in the form of small LiF-like cluster domains, which serve as a mobile ion supply. (3) The extent of lithium-fluorine and lead-fluorine interactions has been characterized by (7)Li{(19)F} and (207)Pb{(19)F} REDOR and SEDOR experiments. On the basis of these results, a quantitative structural description of this system has been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline La(0.86)Sr(0.14)Mn(1-x)Cu(x)O(3+delta) (x = 0, 0.05, 0.10, 0.15, 0.20) manganites were investigated by means of magnetic measurements and zero-field (139)La and (55)Mn nuclear magnetic resonance (NMR) spectroscopy. Magnetization versus temperature measurements revealed a paramagnetic to ferromagnetic transition in most samples, with lower Curie temperatures and broader transitions for samples with higher Cu contents. The details of the magnetization measurements suggested a phase-separated scenario, with ferromagnetic clusters embedded in an antiferromagnetic matrix, especially for the samples with large Cu contents (x = 0.15 and 0.20). Zero-field (139)La NMR measurements confirmed this finding, since the spectral features remained almost unchanged for all Cu-doped samples, whereas the bulk magnetization was drastically reduced with increasing Cu content. (55)Mn NMR spectra were again typical of ferromagnetic regions, with a broadening of the resonance line caused by the disorder introduced by the Cu doping. The results indicate a coexistence of different magnetic phases in the manganites studied, with the addition of Cu contributing to the weakening of the double-exchange interaction in most parts of the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B(0) + lambda M and (ii) B = B(0) + lambda M + lambda`M(3), where B(0) is the external magnetic field, and lambda, lambda` are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents an investigation of the temperature induced modification in the microstructure and dynamics of poly[2-methoxy-5-(2`-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) cast films using Wide-Angle X-ray Scattering (WAXS), solid-state Nuclear Magnetic Resonance (NMR), and Fluorescence Spectroscopy (PL). MEH-PPV chain motions were characterized as a function of temperature by NMR. The results indicated that the solvent used to cast the films influences the activation energy of the side-chain motions. This was concluded from the comparison of the activation energy of the toluene cast film, E(a) = (54 +/- 8) kJ/mol, and chloroform cast film, E(a) = (69 +/- 5) kJ/mol, and could be attributed to the higher side-chain packing provided by chloroform, that preferentially solvates the side chain in contrast to toluene that solvates mainly the backbone. Concerning the backbone mobility, it was observed that the torsional motions in the MEH-PPV have average amplitude of similar to 10 degrees at 300 K, which was found to be independent of the solvent used to cast the films. In order to correlate the molecular dynamics processes with the changes in the microstructure of the polymer, in situ WAXS experiments as a function of temperature were performed and revealed that the interchain spacing in the MEH-PPV molecular aggregates increases as a function of temperature, particularly at temperatures where molecular relaxations occur. It was also observed that the WAXS peak associated with the bilayer spacing becomes narrower and its intensity increases whereas the peak associated with the inter-backbone planes reduces its intensity for higher temperatures. This last result Could be interpreted as a decrease in the number of aggregates and the reduction of the interchain species during the MEH-PPV relaxation processes. These WAXS results were correlated with PL spectra modifications observed upon temperature treatments. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of H-1 and C-13 Nuclear Magnetic Resonance (NMR) for the nano-composite materials formed by the intercalation of hexadecylamine (HDA) in metal oxides (TiO2, V2O5 and MoO3), are reported. The H-1 NMR spin-lattice relaxation in the rotating frame was described by using the spectral density due to Davidson and Cole, which incorporates a distribution of correlation times characterized by a width parameter epsilon. The fitting of the data was obtained for epsilon = 0.74, indicating that the correlation times are distributed over a narrow range in this system. High-resolution C-13 NMR techniques were used to resolve the NMR lines of middle-chain methylene groups in the spectra and variable contact time cross-polarization {H-1-}C-13 experiments were employed to analyze the reorientation dynamics of the CH3 and CH2 groups in the HDA chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysilsesquioxanes containing methacrylate pendant groups were prepared by the sol-gel process through hydrolysis and condensation of (3-methacryloxypropyl)trimethoxysilane (MPTS) dissolved in a methanol/methyl methacrylate (MMA) mixture. The effects of different water, MMA, and methanol contents, as well as of pH, on the nanoscopic and local structures of the system, at advanced stages of the condensation reaction, were studied by small-angle X-ray scattering (SAXS) and (29)Si nuclear magnetic resonance (NMR) spectroscopy, respectively. SAXS results indicate that the nanoscopic features of the hybrid sol could be described by a hierarchical model composed of two levels, namely (i) silsesquioxane (SSQO) nanoparticles Surrounded by the methacrylate pendant groups and the methanol/MMA mixture. and (ii) aggregation zones or islands containing correlated SSQO nanoparticles, embedded in the liquid medium. The (29)Si NMR results Show that the inner Structures of SSQO nanoparticles produced at pH 1 and 3 were built Up of polyhedral structures. mainly cagelike octamers and small linear oligomers, respectively. Irrespective of MMA and methanol contents, for a [H(2)O]/[MPTS] ratio higher than or equal to 1, the SSQO nailoparticles produced at pH I exhibit an average condensation degree (CD approximate to 69-87%) and average radius of gyration (R(g) approximate to 2.5 angstrom) larger than those produced at pH 3 (CD approximate to 48-67% and R(g) approximate to 1.5 angstrom). Methanol appears to act as a redispersion agent, by decreasing the number of particles inside the aggregation zones, while the addition of MMA induces a swelling of the aggregation zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-Density Lipoprotein (LDL), often known as ""bad cholesterol"" is one of the responsible to increase the risk of coronary arterial diseases. For this reason, the cholesterol present in the LDL particle has become one of the main parameters to be quantified in routine clinical diagnosis. A number of tools are available to assess LDL particles and estimate the cholesterol concentration in the blood. The most common methods to quantify the LDL in the plasma are the density gradient ultracentrifugation and nuclear magnetic resonance (NMR). However, these techniques require special equipments and can take a long time to provide the results. In this paper, we report on the increase of the Europium emission in Europium-oxytetracycline complex aqueous solutions in the presence of LDL. This increase is proportional to the LDL concentration in the solution. This phenomenum can be used to develop a method to quantify the number of LDL particles in a sample. A comparison between the performances of the oxytetracycline and the tetracycline in the complexes is also made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.