66 resultados para nonstructural protein 5
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Innate immune recognition of flagellin is shared by transmembrane TLR5 and cytosolic Nlrc4 (NOD-like receptor family CARD (caspase activation recruitment domain) domain containing 4)/Naip5 (neuronal apoptosis inhibitory protein 5). TLR5 activates inflammatory genes through MYD88 pathway, whereas Nlrc4 and Naip5 assemble multiprotein complexes called inflammasomes, culminating in caspase-1 activation, IL-1 beta/IL-18 secretion, and pyroptosis. Although both TLR5 and Naip5/Nlrc4 pathways cooperate to clear infections, little is known about the relative anti-pathogen effector mechanisms operating through each of them. Here we show that the cytosolic flagellin (FLA-BSDot) was able to activate iNOS, an enzyme previously associated with TLR5 pathway. Using Nlrc4- or Naip5-deficient macrophages, we found that both receptors are involved in iNOS activation by FLA-BSDot. Moreover, distinct from extracellular flagellin (FLA-BS), iNOS activation by intracellular flagellin is completely abrogated in the absence of caspase-1. Interestingly, IL-1 beta and IL-18 do not seem to be important for FLA-BSDot-mediated iNOS production. Together, our data defined an additional anti-pathogen effector mechanism operated through Naip5 and Nlrc4 inflammasomes and illustrated a novel signaling transduction pathway that activates iNOS.
Resumo:
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study describes amaranth`s protein cholesterol-lowering effect and investigates its mechanisms hypercholesterolaemia was induced in male hamsters through diet rich in casein (300 g/kg diet) containing regular levels of cholesterol (0.5 kg/g) fed during 3 weeks. Animals were divided into three groups and fed ad libitum diets for 4 weeks containing as the sole source of protein: casein (control), amaranth protein isolate or, casein + amaranth protein isolate. Plasma concentrations of cholesterol and triacylglycerols were measured at four different points: at the beginning of the study. after hypercholesterolaemia was induced, in the first week and then at the end of the experimental diet period. The reduction of the total plasma cholesterol concentration at the end of experimental period for animals fed on diets containing amaranth protein isolate pure and with casein were 27% (P < 0.05) and 48% (P < 0.05). respectively, being the non-HDL fractions the most affected. Digestibility of protein as well as excretion of cholesterol and bile acid, were investigated as the possible mechanisms for this significant hypocholesterolaemic effect. Cholesterol excretion was related to the hypocholesterolaemia but could not explain all the observed reduction. Our findings suggest that amaranth protein has a metabolic effect on endogenous cholesterol metabolism. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
P>The aim of this research was to study spray drying as potential action to protect chlorophyllide from environmental conditions for shelf-life extension and characterisation of the powders. Six formulations were prepared with 7.5 and 10 g of carrier agents [gum Arabic (GA), maltodextrin (MA) and soybean protein isolate (SPI)]/100 mL of chlorophyllide solutions. The powders were evaluated for morphological characteristics (SEM), particle size, water activity, moisture, density, hygroscopicity, cold water solubility, sorption isotherms, colour and stability, during 90 days. All the powders were highly soluble, with solubility values around 97%. A significant lower hygroscopicity was observed for GA powders, whilst the lower X(m) values obtained by GAB equation fitting of the sorption isotherms was observed for the 7.5 g MA/100 mL samples. All formulations, but the 1 (7.5 g SPI/100 mL of chlorophyllide), provided excellent stability to the chlorophyllide during 90 days of storage even at room temperature.
Resumo:
The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to encapsulate casein hydrolysate by spray drying with soybean protein isolate (SPI) as wall material to attenuate the bitter taste of that product. Two treatments were prepared: both with 12 g/100 g solids and containing either two proportions of SPI: hydrolysate (70:30 and 80:20), called M1 and M2, respectively. The samples were evaluated for morphological characteristics (SEM), particle size, hygroscopicity, solubility, hydrophobicity, thermal behavior and bitter taste with a trained sensory panel using a paired-comparison test (non-encapsulated samples vs. encapsulated samples). Microcapsules had a continuous wall, many concavities, and no porosity. Treatments M1 and M2 presented average particle sizes of 11.32 and 9.18 mu m, respectively. The wall material and/or the microencapsulation raised the hygroscopicity of the hydrolysate since the free hydrolysate had hygroscopicity of 53 g of water/100 g of solids and M1 and M2 had 106.99 and 102.19 g of water/100 g of solids, respectively. However, the hydrophobicity decreases, the absence of a peak in encapsulated hydrolysates, and the results of the panel sensory test considering the encapsulated samples less bitter (p < 0.05) than the non-encapsulated, showed that spray drying with SPI was an efficient method for microencapsulation and attenuation of the bitter taste of the casein hydrolysate. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work aimed at evaluating the effects of the supplementation of starter diet with Arg on breast muscle development in broilers and the activation of satellite cells and the aggregation of myofibrillar protein. Male Cobb chicks (n = 990) were randomly assigned to 1 of 5 treatments in a complete random design. Measurements of 33 chicks per treatment were made in 6 repetitions. The treatments consisted of a basal diet with 1.390% digestible Arg (without supplementation) and 4 dietary levels of Arg (1.490, 1.590, 1.690, and 1.790%) with Arg:Lys ratios of 1.103, 1.183, 1.262, 1.341, and 1.421, respectively. Arginine supplementation was used only in the starter phase (1 to 21 d). Dietary supplementation with Arg had a positive effect (P < 0.05) on breast and breast fillet weight on d 7 and 21 and on myofiber diameter on d 14 and 21. However, no effect was observed (P > 0.05) on the protein: DNA ratio, which demonstrates that Arg does not interfere with the mitotic activity of the satellite cells. Independently from mechanism, Arg affected muscle growth in the starter phase positively. Dietary supplementation with Arg in the starter phase had no effect (P > 0.05) on the carcass yield of broilers on d 42. Diet supplementation with Arg at levels above the ones recommended for the starter phase may be necessary for improved muscle development in broilers.
Resumo:
The aim of this study was to evaluate the effects of substituting soybean meal for urea on milk protein fractions (casein, whey protein and non-protein nitrogen) of dairy cows in three dietary levels. Nine mid-lactation Holstein cows were used in a 3 x 3 Latin square arrangement, composed of 3 treatments, 3 periods of 21 days each, and 3 squares. The treatments consisted of three different diets fed to lactating cows, which were randomly assigned to three groups of three animals: (A) no urea inclusion, providing 100% of crude protein (CP), rumen undegradable protein (RUP) and rumen degradable protein (RDP) requirements, using soybean meal and sugarcane as roughage; (B) urea inclusion at 7.5 g/kg DM in partial substitution of soybean meal CP equivalent; (C) urea inclusion at 15 g/kg DM in partial substitution of soybean meal CP equivalent. Rations were isoenergetic and isonitrogenous-1 60 g/kg DM of crude protein and 6.40 MJ/kg DM of net energy for lactation. When the data were analyzed by simple polynomial regression, no differences were observed among treatments in relation to milk CP content, true protein, casein, whey protein, non-casein and non-protein nitrogen, or urea. The milk true protein:crude protein and casein:true protein ratios were not influenced by substituting soybean meal for urea in the diet. Based on the results it can be concluded that the addition of urea up to 15 g/kg of diet dry matter in substitution of soybean meal did not alter milk protein concentration casein, whey protein and its non-protein fractions, when fed to lactating dairy cows. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Alexandre CS, Braganca AC, Shimizu MH, Sanches TR, Fortes MA, Giorgi RR, Andrade L, Seguro AC. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am J Physiol Renal Physiol 297: F916-F922, 2009. First published August 5, 2009; doi:10.1152/ajprenal.90256.2008.-Sirolimus, an antiproliferative immunosuppressant, induces hypomagnesemia and hypokalemia. Rosiglitazone activates renal sodiumand water-reabsorptive pathways. We evaluated whether sirolimus induces renal wasting of magnesium and potassium, attempting to identify the tubule segments in which this occurs. We tested the hypothesis that reduced expression of the cotransporter NKCC2 forms the molecular basis of this effect and evaluated the possible association between increased urinary excretion of magnesium and renal expression of the epithelial Mg(2+) channel TRPM6. We then analyzed whether rosiglitazone attenuates these sirolimus-induced tubular effects. Wistar rats were treated for 14 days with sirolimus (3 mg/kg body wt in drinking water), with or without rosiglitazone (92 mg/kg body wt in food). Protein abundance of NKCC2, aquaporin2 (AQP2), and TRPM6 was assessed using immunoblotting. Sirolimus-treated animals presented no change in glomerular filtration rate, although there were marked decreases in plasma potassium and magnesium. Sirolimus treatment reduced expression of NKCC2, and this was accompanied by greater urinary excretion of sodium, potassium, and magnesium. In sirolimus-treated animals, AQP2 expression was reduced. Expression of TRPM6 was increased, which might represent a direct stimulatory effect of sirolimus or a compensatory response. The finding that rosiglitazone prevented or attenuated all sirolimus-induced renal tubular defects has potential clinical implications.
Resumo:
Hypnea musciformis (Wulfen in Jacqu.) J.V. Lamour. is the main source for carrageenan production in Brazil and strains with selected characteristics could improve the production of raw material. The effects of kinetin on growth rates, morphology, protein content, and concentrations of pigments (chlorophyll a, phycoerythrin, phycocyanin, and allophycocyanin) were assessed in the wild strain (brown phenotype) and in the phycoerythrin-deficient strain (green phenotype) of H. musciformis. Concentrations of kinetin ranging from 0 to 50 mu M were tested in ASP 12-NTA synthetic medium with 10 mu M nitrate (N-limited) and 100 mu M nitrate (N-saturated). In N-limited condition, kinetin stimulated growth rates of the phycoerythrin-deficient strain and formation of lateral branches in both colour strains. Kinetin stimulated protein biosynthesis in both strains. However, differences between both nitrogen conditions were significant only in the phycoerythrin-deficient strain. In the wild strain, effects of kinetin on concentrations of phycobiliproteins were not significant in both nitrogen conditions, except for chlorophyll content. However, the phycoerythrin-deficient strain showed an opposite response, and kinetin stimulated the phycobiliprotein biosynthesis, with the highest concentrations of phycoerythrin in N-saturated medium, while the highest concentrations of allophycocyanin and phycocyanin were observed in N-limited medium. These results indicate that the effects of kinetin on growth, morphology, protein and phycobiliprotein contents are influenced by nitrogen availability, and the main nitrogen storage pools in phycoerythrin-deficient strain of H. musciformis submitted to N-limited conditions were phycocyanin and allophycocianin, the biosynthesis of which was enhanced by kinetin.
Resumo:
Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)
Resumo:
Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca(2+) signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca(2+) signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca(2+) signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca(2+) signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background: Chronic, intermittent exposure to psychostimulant drugs results in striatal neuroadaptations leading to an increase in an array of behavioral responses on subsequent challenge days. A brain-specific striatal-enriched tyrosine phosphatase (STEP) regulates synaptic strengthening by dephosphorylating and inactivating several key synaptic proteins. This study tests the hypothesis that a substrate-trapping form of STEP will prevent the development of amphetamine-induced stereotypies. Methods: A substrate-trapping STEP protein, TAT-STEP (C-S), was infused into the ventrolateral striatum on each of 5 consecutive exposure days and I hour before amphetamine injection. Animals were challenged to see whether sensitization to the stereotypy-producing effects of amphetamine developed. The same TAT-STEP (C-S) protein was used on acute striatal slices to determine the impact on long-term potentiation and depression. Results: Infusion of TAT-STEP (C-S) blocks the increase of amphetamine-induced stereotypies when given during the 5-day period of sensitization. The TAT-STEP (C-S) has no effect if only infused on the challenge day. Treatment of acute striatal slices with TAT-STEP (C-S) blocks the induction of long-term potentiation and potentates long-term depression. Conclusions: A substrate trapping form of STEP blocks the induction of amphetamine-induced neuroplasticity within the ventrolateral striatum and supports the hypothesis that STEP functions as a tonic break on synaptic strengthening.
Resumo:
Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (C) 2009 Wiley-Liss, Inc.