12 resultados para nitrification inhibitor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Levels of ethylene and polyamines (PAs) were measured during organogenesis of hypocotyl explants of two species of passion fruit (Passiflora cincinnata Masters and Passiflora edulis Sims f. flavicarpa Degener `FB-100`) to better understand the relationships of these regulators and their influence on cell differentiation and morphogenesis. Moreover, histological investigation of shoot ontogenesis was conducted to characterize the different events involved in cell redifferentiation and regulation of PA and ethylene levels. A delay was observed in morphogenic responses of P. edulis f. flavicarpa as compared to P. cincinnata, and these changes coincided with production of elevated levels of polyamine and ethylene levels. During differentiation, cells showed high rates of expansion and elongation, and high ethylene levels were associated with high PA levels, suggesting that the two biosynthesis pathways were highly regulated. Moreover, their interaction might be an important factor for determining cell differentiation. The addition of PAs to the culture medium did not promote organogenesis; however, the incorporation of the PA inhibitor methylglyoxal bisguanylhydrazone in the culture medium reduced shoot bud differentiation, suggesting the need to maintaining a minimum level of PAs for morphogenic events to take place.
Resumo:
P>A cDNA encoding a small lysine-rich protein of unknown function was identified in a tobacco (Nicotiana tabacum) stigma/style suppression subtractive hybridization cDNA library. After its characterization, the corresponding gene was designated stigma/style cell cycle inhibitor 1 (SCI1). Fluorescence microscopy with an SCI1-GFP protein fusion demonstrated its nuclear localization, which was confined to the interchromatic region. Real-time RT-PCR and in situ hybridization experiments showed that SCI1 is stigma/style-specific and developmentally regulated. SCI1 RNAi knockdown and overexpression plants had stigmas/styles with remarkably enlarged and reduced areas, respectively, which was attributable to differences in cell numbers. These results indicate that SCI1 is a tissue-specific negative cell cycle regulator. The differences in cell division had an effect on the timing of the differentiation of the stigmatic papillar cells, suggesting that their differentiation is coupled to stigma cell divisions. This is consistent with a role for SCI1 in triggering differentiation through cell proliferation control. Our results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.
Resumo:
Bradykinin-potentiating peptides (BPPs) or proline-rich oligopeptides (PROs) isolated from the venom glands of Bothrops jararaca (Bj) were the first natural inhibitors of the angiotensin-converting enzyme (ACE) described. Bj-PRO-5a (< EKWAP), a member of this structurally related peptide family, was essential for the development of captopril, the first site-directed ACE inhibitor used for the treatment of human hypertension. Nowadays, more Bj-PROs have been identified with higher ACE inhibition potency compared to Bj-PRO-5a. However, despite its modest inhibitory effect of ACE inhibition, Bj-PRO-5a reveals strong bradykinin-potentiating activity, suggesting the participation of other mechanisms for this peptide. In the present study, we have shown that Bj-PRO-5a induced nitric oxide (NO) production depended on muscarinic acetylcholine receptor M1 subtype (mAchR-M1) and bradykinin B(2) receptor activation, as measured by a chemiluminescence assay using a NO analyzer. Intravital microscopy based on transillumination of mice cremaster muscle also showed that both bradykinin B(2) receptor and mAchR-M1 contributed to the vasodilatation induced by Bj-PRO-5a. Moreover, Bj-PRO-5a-mediated vasodilatation was completely blocked in the presence of a NO synthase inhibitor. The importance of this work lies in the definition of novel targets for Bj-PRO-5a in addition to ACE, the structural model for captopril development. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE The serine and cysteine peptidase inhibitor, BbCI, isolated from Bauhinia bauhinioides seeds, is similar to the classical plant Kunitz inhibitor, STI, but lacks disulphide bridges and methionine residues. BbCI blocks activity of the serine peptidases, elastase (K(iapp) 5.3 nM) and cathepsin G (K(iapp) 160.0 nM), and the cysteine peptidase cathepsin L (K(iapp) 0.2 nM). These three peptidases play important roles in the inflammatory process. EXPERIMENTAL APPROACH We measured the effects of BbCI on paw oedema and on leucocyte accumulation in pleurisy, both induced by carrageenan. Leucocyte-endothelial cell interactions in scrotal microvasculature in Wistar rats were investigated using intravital microscopy. Cytokine levels in pleural exudate and serum were measured by ELISA. KEY RESULTS Pretreatment of the animals with BbCI (2.5 mg.kg(-1)), 30 min before carrageenan-induced inflammation, effectively reduced paw oedema and bradykinin release, neutrophil migration into the pleural cavity. The number of rolling, adhered and migrated leucocytes at the spermatic fascia microcirculation following carrageenan injection into the scrotum were reduced by BbCI pretreatment. Furthermore, levels of the rat chemokine cytokine-induced neutrophil chemo-attractant-1 were significantly reduced in both pleural exudates and serum from animals pretreated with BbCI. Levels of interleukin-1 beta or tumour necrosis factor-alpha, however, did not change. CONCLUSIONS AND IMPLICATIONS Taken together, our data suggest that the anti-inflammatory properties of BbCI may be useful in investigations of other pathological processes in which human neutrophil elastase, cathepsin G and cathepsin L play important roles.
Resumo:
The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.
Resumo:
A new piggyBac-related transposable element (TE) was found in the genome of a mutant Anticarsia gemmatalis multiple nucleopolyhedrovirus interrupting an inhibitor of apoptosis gene. This mutant virus induces apoptosis upon infection of an Anticarsia gemmatalis cell line, but not in a Trichoplusia ni cell line. The sequence of the new TE (which was named IDT for iap disruptor transposon) has 2531 bp with two DNA sequences flanking a putative Transposase (Tpase) ORF of 1719 bp coding for a protein with 572 amino acids. These structural features are similar to the piggyBac TE, also reported for the first time in the genome of a baculovirus. We have also isolated variants of this new TE from different lepidopteran insect cells and compared their Tpase sequences.
Resumo:
Kazal-type inhibitors play several important roles in invertebrates, such as anticoagulant, vasodilator and antimicrobial activities. Putative Kazal-type inhibitors were described in several insect transcriptomes. In this paper we characterized for the first time a Kazal unique domain trypsin inhibitor from the Aedes aegypti mosquito. Previously, analyses of sialotranscriptome of A. aegypti showed the potential presence of a Kazal-type serine protease inhibitor, in female salivary glands, carcass and also in whole male, which we named AaTI (A. aegypti trypsin inhibitor). AaTI sequence showed amino acid sequence similarity with insect thrombin inhibitors, serine protease inhibitor from Litopenaeus vannamei hemocytes and tryptase inhibitor from leech Hirudo medicinalis (LDTI). In this work we expressed, purified and characterized the recombinant AaTI (rAaTI). Molecular weight of purified rAaTI was 7 kDa rAaTI presented dissociation constant (K(i)) of 0.15 and 3.8 nM toward trypsin and plasmin, respectively, and it weakly inhibited thrombin amidolytic activity. The rAaTI was also able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. AaTI transcription was confirmed in A. aegypti female salivary gland and gut 3 h and 24 h after blood feeding, suggesting that this molecule can act as anticoagulant during the feeding and digestive processes. Its transcription in larvae and pupae suggested that AaTI may also play other functions during the mosquito`s development. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
A novel inhibitor of Schistosoma PNP was identified using an ""in silico"" approach allied to enzyme inhibition assays. The compound has a monocyclic structure which has not been previously described for PNP inhibitors The crystallographic structure of the complex was determined and used to elucidate the binding mode within the active site Furthermore, the predicted pose was very similar to that determined crystallographically, validating the methodology The compound Sm_VS1, despite its low molecular weight, possesses an IC(50) of 1 3 mu M, surprisingly low when compared with purine analogues This is presumably due to the formation of eight hydrogen bonds with key residues in the active site E203, N245 and T244. The results of this study highlight the importance of the use of multiple conformations for the target during virtual screening. Indeed the Sm_VS1 compound was only identified after flipping the N245 side chain It is expected that the structure will be of use in the development of new highly active non-purine based compounds against the Sclustosoma enzyme. (c) 2010 Elsevier B V. All rights reserved
Resumo:
The aim of this study was to evaluate the anti-tumor activity of Amblyomin-X, a serine protease Kunitz-type inhibitor. Amblyomin-X induced tumor mass regression and decreased number of metastatic events in a B16F10 murine melanoma model. Alterations on expression of several genes related to cell cycle were observed when two tumor cell lines were treated with Amblyomin-X. PSMB2, which encodes a proteasome subunit, was differentially expressed, in agreement to inhibition of proteasomal activity in both cell lines. In conclusion, our results indicate that Amblyomin-X selectively acts on tumor cells by inducing apoptotic cell death, possibly by targeting the ubiquitin-proteasome system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Cdc25 phosphatases involved in cell cycle checkpoints are now active targets for the development of anti-cancer therapies. Rational drug design would certainly benefit from detailed structural information for Cdc25s. However, only apo- or sulfate-bound crystal structures of the Cdc25 catalytic domain have been described so far. Together with previously available crystalographic data, results from molecular dynamics simulations, bioinformatic analysis, and computer-generated conformational ensembles shown here indicate that the last 30-40 residues in the C-terminus of Cdc25B are partially unfolded or disordered in solution. The effect of C-terminal flexibility upon binding of two potent small molecule inhibitors to Cdc25B is then analyzed by using three structural models with variable levels of flexibility, including an equilibrium distributed ensemble of Cdc25B backbone conformations. The three Cdc25B structural models are used in combination with flexible docking, clustering, and calculation of binding free energies by the linear interaction energy approximation to construct and validate Cdc25B-inhibitor complexes. Two binding sites are identified on top and beside the Cdc25B active site. The diversity of interaction modes found increases with receptor flexibility. Backbone flexibility allows the formation of transient cavities or compact hydrophobic units on the surface of the stable, folded protein core that are unexposed or unavailable for ligand binding in rigid and densely packed crystal structures. The present results may help to speculate on the mechanisms of small molecule complexation to partially unfolded or locally disordered proteins.
Resumo:
Background: The expression levels of the clotting initiator protein Tissue Factor (TF) correlate with vessel density and the histological malignancy grade of glioma patients. Increased procoagulant tonus in high grade tumors (glioblastomas) also indicates a potential role for TF in progression of this disease, and suggests that anticoagulants could be used as adjuvants for its treatment. Objectives: We hypothesized that blocking of TF activity with the tick anticoagulant Ixolaris might interfere with glioblastoma progression. Methods and results: TF was identified in U87-MG cells by flow-cytometric and functional assays (extrinsic tenase). In addition, flow-cytometric analysis demonstrated the exposure of phosphatidylserine in the surface of U87-MG cells, which supported the assembly of intrinsic tenase (FIXa/FVIIIa/FX) and prothrombinase (FVa/FXa/prothrombin) complexes, accounting for the production of FXa and thrombin, respectively. Ixolaris effectively blocked the in vitro TF-dependent procoagulant activity of the U87-MG human glioblastoma cell line and attenuated multimolecular coagulation complexes assembly. Notably, Ixolaris inhibited the in vivo tumorigenic potential of U87-MG cells in nude mice, without observable bleeding. This inhibitory effect of Ixolaris on tumor growth was associated with downregulation of VEGF and reduced tumor vascularization. Conclusion: Our results suggest that Ixolaris might be a promising agent for anti-tumor therapy in humans.
Resumo:
Sunflower trypsin inhibitor-1 (SFI-1), a natural 14-residue cyclic peptide, and some of its synthetic acyclic variants are potent protease inhibitors displaying peculiar inhibitory profiles. Here we describe the synthesis and use of affinity sorbents prepared by coupling SFTI-1 analogues to agarose resin. Chymotrypsinand trypsin-like proteases could then be selectively isolated from pancreatin; similarly, other proteases were obtained from distinct biological sources. The binding capacity of [Lys5]-SFTI-1-agarose for trypsin was estimated at over 10 mg/mL of packed gel. SFTI-1-based resins could find application either to improve the performance of current purification protocols or as novel protease-discovery tools in different areas of biological investigation. (C) 2009 Elsevier B.V. All rights reserved.