3 resultados para mitosis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin is the hormone that plays an essential role in metabolism and mitosis of normal and tumor cells, exerting its pleiotropic effects through binding to specific membrane receptors and promoting the phosphorylation of tyrosine residues of the receptor itself and of other components of the signaling pathway. The aim of this study was to investigate the effects of insulin on melanogenesis and cell growth in three different cell lines: the goldfish GEM-81 erythrophoroma cells (undifferentiated and differentiated with 1.5% dimethylsulfoxide-DMSO), and the murine B16F10 and Cloudman S91 melanoma cells. Undifferentiated GEM-81 and B16F10 cells responded to insulin with a small increase of cell proliferation, whereas S91 cells responded with a decrease of growth. In the two mammalian cell lines, and in DMSO-differentiated GEM-81 cells, the hormone strongly inhibited melanogenesis, by decreasing tyrosinase activity. In undifferentiated GEM-81 cells, insulin had no effect on tyrosinase activity. An increase in the tyrosine phosphorylation status of pp 185 (insulin receptor substrate 1 and 2-IRS-1/2) phosphorylation degree was observed in S91 mouse melanoma and in differentiated GEM-81 erythrophoroma cells, suggesting that this specific protein was maintained during transformation process and participates in insulin signaling. Our results imply an ancient and diverse history of the insulin signaling system in vertebrate pigment cells. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the ovary morphology of newly emerged ant queens of Atta sexdens rubropilosa was studied in whole mount preparations by confocal microscopy. The ovaries are composed of approximately 40 ovarioles, showing non-synchronic oocyte maturation. The terminal filament with clusters of undifferentiated cells was found at the distal end of the ovarioles. Next to this region is the germarium, composed of several elongated cystocytes interconnected by cytoplasmic bridges. The nurse cells (23-28 cells) result from asymmetric mitosis. Cytoskeleton analysis showed F-actin concentrated at the muscle cells of the external tunica and in fusomes inside the ovarioles. Microtubules were concentrated around the nuclei of the nurse and follicular cells. In contrast, the oocytes and the external tunica showed faint staining for tubulin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meningioma tumor growth involves the subarachnoid space that contains the cerebrospinal fluid. Modeling tumor growth in this microenvironment has been associated with widespread leptomeningeal dissemination, which is uncharacteristic of human meningiomas. Consequently, survival times and tumor properties are varied, limiting their utility in testing experimental therapies. We report the development and characterization of a reproducible orthotopic skull-base meningioma model in athymic mice using the IOMM-Lee cell line. Localized tumor growth was obtained by using optimal cell densities and matrigel as the implantation medium. Survival times were within a narrow range of 17-21 days. The xenografts grew locally compressing surrounding brain tissue. These tumors had histopathologic characteristics of anaplastic meningiomas including high cellularity, nuclear pleomorphism, cellular pattern loss, necrosis and conspicuous mitosis. Similar to human meningiomas, considerable invasion of the dura and skull and some invasion of adjacent brain along perivascular tracts were observed. The pattern of hypoxia was also similar to human malignant meningiomas. We use bioluminescent imaging to non-invasively monitor the growth of the xenografts and determine the survival benefit from temozolomide treatment. Thus, we describe a malignant meningioma model system that will be useful for investigating the biology of meningiomas and for preclinical assessment of therapeutic agents.