114 resultados para microbial source tracking, E. coli, SNP, CRISPR, faecal contamination, bacteriophage

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photodynamic therapy (PDT) is a combination of using a photosensitizer agent, light and oxygen that can cause oxidative cellular damage. This technique is applied in several cases, including for microbial control. The most extensively studied light sources for this purpose are lasers and LED-based systems. Few studies treat alternative light sources based PDT. Sources which present flexibility, portability and economic advantages are of great interest. In this study, we evaluated the in vitro feasibility for the use of chemiluminescence as a PDT light source to induce Staphylococcus aureus reduction. The Photogem (R) concentration varied from 0 to 75 mu g/ml and the illumination time varied from 60 min to 240 min. The long exposure time was necessary due to the low irradiance achieved with chemiluminescence reaction at mu W/cm(2) level. The results demonstrated an effective microbial reduction of around 98% for the highest photosensitizer concentration and light dose. These data suggest the potential use of chemiluminescence as a light source for PDT microbial control, with advantages in terms of flexibility, when compared with conventional sources. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Sigma factors and the alarmone ppGpp control the allocation of RNA polymerase to promoters under stressful conditions. Both ppGpp and the sigma factor sigma(S) (RpoS) are potentially subject to variability across the species Escherichia coli. To find out the extent of strain variation we measured the level of RpoS and ppGpp using 31 E. coli strains from the ECOR collection and one reference K-12 strain. Results: Nine ECORs had highly deleterious mutations in rpoS, 12 had RpoS protein up to 7-fold above that of the reference strain MG1655 and the remainder had comparable or lower levels. Strain variation was also evident in ppGpp accumulation under carbon starvation and spoT mutations were present in several low-ppGpp strains. Three relationships between RpoS and ppGpp levels were found: isolates with zero RpoS but various ppGpp levels, strains where RpoS levels were proportional to ppGpp and a third unexpected class in which RpoS was present but not proportional to ppGpp concentration. High-RpoS and high-ppGpp strains accumulated rpoS mutations under nutrient limitation, providing a source of polymorphisms. Conclusions: The ppGpp and sigma(S) variance means that the expression of genes involved in translation, stress and other traits affected by ppGpp and/or RpoS are likely to be strain-specific and suggest that influential components of regulatory networks are frequently reset by microevolution. Different strains of E. coli have different relationships between ppGpp and RpoS levels and only some exhibit a proportionality between increasing ppGpp and RpoS levels as demonstrated for E. coli K-12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pilot-scale (1.2 m(3)) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65-1.90 kgSO(4)(2-)/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO(4)(2-) l(-1). Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO(4)(2-) l(-1). At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO(4)(2-) l(-1), whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO(4)(2-) l(-1). These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea(Methanosaeta spp.)was found at 1.0 and 2.0 gSO(4)(2-) l(-1). Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anaerobic biological treatment of pentachlorophenol (PCP) and methanol as the main carbon source was investigated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor at 30 +/- 1 degrees C, during a 220-day trial period. The reactor biomass was developed as an attached biofilm on polyurethane foam particles, with 24 h of hydraulic retention time. The PCP concentrations, which ranged from 2.0 to 13.0 mg/L, were controlled by adding synthetic substrate. The HAIB reactor reduced 97% of COD and removed 99% of PCP. The microbial biofilm communities of the HAIB reactor amended with PCP, without previous acclimatization, were characterized by polymerase chain reaction (PCR) and amplified ribosomal DNA restriction analysis (ARDRA) with specific Archaea oligonucleotide primers. The ARDRA technique provided an adequate analysis of the community, revealing the profile of the selected population along the reactor. The biomass activities in the HAIB reactor at the end of the experiments indicated the development of PCP degraders and the maintenance of the population of methanogenic Archaea, ensuring the high efficiency of the system treating PCP with added methanol as the cosubstrate. The use of the simplified ARDRA method enabled us to monitor the microbial population with the addition of high concentrations of toxic compounds and highlighting a selection of microorganisms in the biofilm. (C) 2008 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H, and volatile acids` producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H-2 by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H-2/mol sucrose), 20% (1.6 mol H-2/mol sucrose), 15% (1.2 mol H-2/mol sucrose) and 4% (0.3 mol H-2/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phylogenetic group distribution of Escherichia coli strains isolated from the Sorocaba and Jaguari Rivers located in the State of Sao Paulo, Brazil, is described. E. coli strains from group D were found in both rivers while one strain from group B2 was isolated from the Sorocaba river. These two groups often include strains that can cause extraintestinal diseases. Most of the strains analyzed were allocated into the phylogenetic groups A and B1, supporting the hypothesis that strains from these phylogenetic groups are more abundant in tropical areas. Though both rivers are located in urbanized and industrialized areas where the main source of water pollution is considered to derive from domestic sewage, our results suggest that the major sources of contamination in the sampling sites of both rivers might have originated from animals and not humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are biodegradable and renewable polymers produced by a wide range of bacterial groups. New microbial bioprospection approaches have become an important way to find new PHA producers and new synthesized polymers. Over the past years, bacteria belonging to actinomycetes group have become known as PHA producers, such as Nocardia and Rhodococcus species, Kineosphaera limosa Liu et a]. 2002, and, more recently, Streptomyces species. In this paper, we disclose that there are more actinobacteria PHA producers in addition to the genera cited. Some unusual genera, such as Streptoalloteichus, and some genera frequently present in soil, such as Streptacidiphilus, have been found. Thirty-four isolates were able to accumulate poly(3-hydroxybutyrate) and a number of these have traces of poly(3-hydroxyvalerate) when cultivated on glucose or glucose and casein as carbon source. Furthermore, some strains showed traces of medium chain length PHA. Transmission electron microscopy demonstrated that the PHA accumulation occurs in hyphae and spores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral trehalase from Neurospora crassa was expressed in Escherichia coli as a polypeptide of similar to 84 kDa in agreement with the theoretical size calculated from the corresponding cDNA. The recombinant neutral trehalase, purified by affinity chromatography exhibited a specific activity of 80-150 mU/mg protein. Optima of pH and temperature were 7.0 and 30 degrees C, respectively. The enzyme was absolutely specific for trehalose, and was quite sensitive to incubation at 40 degrees C. The recombinant enzyme was totally dependent on calcium, and was inhibited by ATP, copper, silver, aluminium and cobalt. K(M) was 42 mM, and V(max) was 30.6 nmol of glucose/min. The recombinant protein was phosphorylated by cAMP-dependent protein kinase, but not significantly activated. Immunoblotting with polyclonal antiserum prepared against the recombinant protein showed that neutral trehalase protein levels increased during exponential phase of N. crassa growth and dropped at the stationary phase. This is the first report of a neutral trehalase produced in E. coli with similar biochemical properties described for fungi native neutral trehalases, including calcium-dependence. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the microbial diversity associated with marine macroorganisms, despite the vital role microorganisms may play in marine ecosystems. The aim of the present study was to investigate the diversity of bacteria and fungi isolated from eight marine invertebrate and one algae samples. Data derived from ARDRA and sequencing analyses allowed the identification of marine-derived microorganisms isolated from those samples. Microbial strains identified up to the genus level revealed 144 distinct ribotypes out of 256 fungal strains and 158 distinct ribotypes out of 181 bacterial strains. Filamentous fungi were distributed among 24 different genera belonging to Ascomycota, Zygomycota and Basidiomycota, some of which had never been reported in the literature as marine invertebrate-inhabiting fungi (Pestalotiopsis, Xylaria, Botrysphaeria and Cunnninghamella). Bacterial isolates were affiliated to 41 different genera, being Bacillus, Ruegeria, Micrococcus, Pseudovibrio and Staphylococcus the most abundant ones. Results revealed an unexpected high microbial diversity associated to the macroorganisms which have been collected and suggested the selection of certain microbial taxonomic groups according to the host. The combined data gathered from this investigation contribute to broaden the knowledge of microbial diversity associated to marine macroorganisms, including as a promising source for the discovery of new natural products. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SHED (stem cells from human exfoliated deciduous teeth) represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the microbial distribution in the root canal system after periapical lesion induction in dogs' teeth using different methods. Fifty-two root canals were assigned to 4 groups (n=13). Groups I and II: root canals were exposed to the oral cavity for 180 days; groups III and IV: root canals were exposed for 7 days and then the coronal openings were sealed for 53 days. The root apices of groups I and III were perforated, while those of groups II and IV remained intact. After the experimental periods, the animals were euthanized and the anatomic pieces containing the roots were processed and stained with the Brown & Brenn method to assess the presence and distribution of microorganisms. The incidence of microorganisms at different sites of the roots and periapical lesions was analyzed statistically by the chi-square test at 5% significance level. All groups presented microorganisms in the entire root canal system. A larger number of microorganisms was observed on the root canal walls, apical delta and dentinal tubules (p<0.05), followed by cementum and cemental resorption areas. In spite of the different periods of exposure to the oral environment, the methods used for induction of periapical periodontitis yielded similar distribution of microorganisms in the root canal system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From January to December 2006, 92 Escherichia coli isolates from 25 diarrheic dogs were analyzed by screening for the presence of adhesin-encoding genes (pap, sfa, afa), hemolysin and aerobactin genes. Virulence gene frequencies detected in those isolates were: 12% pap, 1% sfa, 10% hemolysin and 6.5% aerobactin. Ten isolates were characterized as extraintestinal pathogenic E. coli (ExPEC) strains; all showed a multidrug resistance phenotype that may represent a reason for concern due the risk of dissemination of antimicrobial resistant genes to the microbiota of human beings.