17 resultados para methylmercury
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Some studies have recently suggested that mercury (Hg)-exposed populations face increased risks of cardiovascular diseases, and experimental data indicate that such risks might be due to reductions in nitric oxide bioavailability. However, no previous study has examined whether Hg exposure affects plasma nitrite concentrations in humans as an indication of nitric oxide production. Here, we investigated whether there is an association between circulating nitrite and Hg concentrations in whole blood, plasma and hair from an exposed methylmercury (MeHg) population. Hair and blood samples were collected from 238 persons exposed to MeHg from fish consumption. Hg concentrations in plasma (PHg), whole blood (BHg) and hair Hg (HHg) were determined by inductively coupled plasma-mass spectrometry. Mean BHg content was 49.8 +/- 35.2 mu g/l, mean PHg was 7.8 +/- 6.9 mu g/l and HHg 14.6 +/- 10.6 mu g/g. Mean plasma nitrite concentration was 253.2 +/- 105.5 nM. No association was found between plasma nitrite concentration and BHg or HHg concentrations in a univariate model. However, multiple regression models adjusted for gender, age and fish consumption showed a significant association between plasma nitrite and plasma Hg concentration (beta = -0.1, p < 0.001). Our findings constitute preliminary clinical evidence that exposure to MeHg may cause inhibitory effects on the production of endothelial nitric oxide.
Sub-Chronic Exposure to Methylmercury at Low Levels Decreases Butyrylcholinesterase Activity in Rats
Resumo:
In this study, we examined the effects of low levels and sub-chronic exposure to methylmercury (MeHg) on butyrylcholinesterase (BuChE) activity in rats. Moreover, we examined the relationship between BuChE activity and oxidative stress biomarkers [delta-aminolevulinic acid dehydratase (delta-ALA-D) and malondialdehyde levels (MDA)] in the same animals. Rats were separated into three groups (eight animals per group): (Group I) received water by gavage; (Group II) received MeHg (30 mu g/kg/day) by gavage; (Group III) received MeHg (100 mu g/kg/day). The time of exposure was 90 days. BuChE and ALA-D activities were measured in serum and blood, respectively; whereas MDA levels were measured in plasma. We found BuChE and ALA-D activities decreased in groups II and III compared to the control group. Moreover, we found an interesting negative correlation between plasmatic BuChE activity and MDA (r = -0.85; p < 0.01) and a positive correlation between plasmatic BuChE activity and ALA-D activities (r = 0.78; p < 0.01), thus suggesting a possible relationship between oxidative damage promoted by MeHg exposure and the decrease of BuChE activity. In conclusion, long-term exposure to low doses of MeHg decreases plasmatic BuChE activity. Moreover, the decrease in the enzyme is strongly correlated with the oxidative stress promoted by the metal exposure. This preliminary finding highlights a possible mechanism for MeHg to reduce BuChE activity in plasma. Additionally, this enzyme could be an auxiliary biomarker on the evaluation of MeHg exposure.
Resumo:
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there area limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 mu L) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCI was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) L-cysteine, 0.06 mol L(-1) ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 mu g L(-1) and 0.1 mu Lg L(-1) for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Increased risk of hypertension after methylmercury (MeHg) exposure has been suggested. However, the underlying mechanisms are not well explored. In this paper, we have analyzed whether sub-chronic exposure to MeHg increases systolic blood pressure even at very low levels. In addition, we analyzed if the methylmercury-induced hypertension is associated with a decreased plasmatic nitric oxide levels and with a dysregulation of the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), as well as the levels of MDA and glutathione. For this study, Wistar rats were treated with methylmercury chloride (100 mu g/kg per day) or vehicle. Total treatment time was 100 days. Malondialdehyde (MDA) and circulating NOx levels and superoxide dismutase (SOD) and catalase (CAT) activities were determined in plasma, whereas glutathione levels were determined in erythrocytes. Our results show that long-term treatment at a low level of MeHg affected systolic blood pressure, increasing and reducing the levels of plasmatic MDA and NOx, respectively. However, the activity of SOD did not decrease in the MeHg exposed group when compared to the control. We found a negative correlation between plasmatic nitrite/nitrate (NOx) levels and systolic blood pressure (r = -0.67; P = 0.001), and a positive correlation between MDA and systolic blood pressure (r = 0.61; P = 0.03), thus suggesting increased inhibition of NO formation with the increase of hypertension. In conclusion, long-term exposure to a low dose of MeHg increases the systolic pressure and is associated, at least in part, with increased production of ROS as judged by increased production of malondialdehyde and depressed NO availability.
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
In this study we investigated the effects of subacute exposure to methylmercury (MeHg) on male reproductive functions in rats by means of determination of alterations in structural and functional parameters. Adult male Wistar rats received 0, 0.5, 1.0 or 3.0 mg/kg/body weight/day orally, daily MeHg for 14 days. Sperm motility, the relative sperm count and transit time in the caput/corpus epididymis, were all reduced at all doses. The lowest dose increased the number of sperm head abnormalities; daily sperm production was elevated at the intermediate dose; while at the highest dose there was a decrease in serum testosterone levels and a rise in mercury (Hg) content in reproductive organs, liver and kidneys. In conclusion, MeHg exposure produced damages on male reproductive functions which may be attributed, at least in part, to the reduction in serum testosterone levels. These consequences could potentially result in infertility in rats. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Methylmercury is a known neurotoxic organometal which affects visual functions and few studies concerns to wild fish are available. The autometallography mercury distribution in the retina of Danio rerio was mapped using light and electron microscopy. Abundant mercury deposits were found in the photoreceptor layer (outer and inner segments of the photoreceptors) and in the inner and outer nuclear layers. Occasionally, the presence of mercury deposits in plexiform layers was observed and very rarely in the ganglion cell layer. Also the occurrence of mercury deposits in cells from the disc region was observed, but not in the nerve fiber layer. An interesting difference was found between mercury accumulation in the central and peripheral regions of the retina. These results demonstrate that mercury after trophic exposure to Danio rerio is able to cross the blood-retina barrier and accumulate in the cells of the retina even under subchronic exposure. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this study we examined the possible antigenotoxic effect of selenium (Se) in rats chronically exposed to low levels of methylmercury (MeHg) and the association between glutathione peroxidase (GSH-Px) activity and DNA lesions (via comet assay) in the same exposed animals. Rats were divided into six groups as follows: (Group I) received water; (Group II) received MeHg (100 mu g/day); (Group III) received Se (2 mg/L drinking water); (Group IV) received Se (6 mg/L drinking water); (Group V) received MeHg (100 mu g/day) and Se (2 mg/L drinking water); (Group VI) received MeHg (100 mu g/day) and Se (6 mg/L drinking water). Total treatment time was 100 days. GSH-Px activity was determined spectrophotometrically and DNA damage was determined by comet assay. Mean GSH-Px activity in groups I, II, III, IV, V and VI were, respectively: 40.19 +/- A 17.21; 23.63 +/- A 6.04; 42.64 +/- A 5.70; 38.50 +/- A 7.15; 34.54 +/- A 6.18 and 41.39 +/- A 11.67 nmolNADPH/min/gHb. DNA damage was represented by a mean score from 0 to 300; the results for groups I, II, III, IV, V and VI were, respectively: 6.87 +/- A 3.27; 124.12 +/- A 13.74; 10.62 +/- A 3.81; 13.25 +/- A 1.76; 86.87 +/- A 11.95 and 76.25 +/- A 7.48. There was a significant inhibition of GSH-Px activity in group II compared with group I (P < 0.05). Groups V and VI did not show a difference in enzyme activity compared with groups III and IV, showing the possible protective action of Se. Comet assay presented a significant difference in DNA migration between group II and group I (P < 0.0001). Groups V and VI showed a significant reduction in MeHg-induced genotoxicity (P < 0.001) when compared with group II. A negative correlation (r = -0.559, P < 0.05) was found between GSH-Px activity and DNA lesion, showing that the greater the DNA damage, the lower the GSH-Px activity. Our findings demonstrated the oxidative and genotoxic properties of MeHg, even at low doses. Moreover, Se co-administration reestablished GSH-Px activity and reduced DNA damage.
Resumo:
This study was designed to evaluate the degree of environmental contamination and possible exposure of pregnant women to toxic elements in seven selected areas of Sao Paulo State, Brazil. The overall median concentration of Mo in maternal blood was 0.53 mu g L(-1), highly significant differences found between sites (p < 0.0001). Cd was found to be low overall - 0.09 mu g L(-1) (0.01-0.58 mu g L(-1)) - with mothers from the Coastal and Rural 1 sites having the highest levels (p < 0.016). Median Hg concentration was 0.60 mu g L (1) (0.06 mu g L (1)-4.35 mu g L (1)); median Pb level was 16.2 mu g L (1) (3.5-57.7 mu g L(-1)) and no differences between sites were observed for both metals. Median Mn level was 16.7 mu g L(-1) (7.0-39.7 mu g L(-1)), being highest in Urban 2 site (p < 0.016). Concentrations of maternal Co were found to range between 0.06 mu g L(-1) and 1.1 mu g L(-1) (median 0.25 mu g L(-1)) and As level was 0.60 mu g L(-1) (0.10-3.8 mu g L(-1)) overall, with no statistical significance between sites for Co and As. Median Se concentrations were found to be 64 mg L(-1) (36-233 mu g L(-1)), with the highest median levels found in Urban 3 site; site differences were statistically significant (p < 0.0001). Correlation for each element (between paired maternal and cord blood) was measured only in Rural site 1; significant correlation was shown for Hg, Pb, Mn and Co (p < 0.05). These findings may be interpreted as indicating low environmental contamination in Sao Paulo State, Brazil. These findings could also indicate that pregnant women have little or no contact with pollutants, possibly due to awareness campaigns carried out by public health practitioners.
Resumo:
A simple and reliable method for Hg determination in fish samples has been developed. Lyophilised fish tissue samples were extracted in a 25% (w/v) tetramethylammonium hydroxide (TMAH) solution; the extracts were then analysed by FI-CVAFS. This method can be used to determine total and inorganic Hg, using the same FI manifold. For total Hg determination, a 0.1% (w/v) KMnO(4) solution was added to the FI manifold at the sample zone, followed by the addition of a 0.5% (w/v) SnCl(2) solution, whereas inorganic Hg was determined by adding a 0.1% (w/v) L-cysteine solution followed by a 1.0% (w/v) SnCl(2) solution to the FI system. The organic fraction was determined as the difference between total and inorganic Hg. Sample preparation, reagent consumption and parameters that can influence the FI-CVAFS performance were also evaluated. The limit of detection for this method is 3.7 ng g(-1) for total Hg and 4.3 ng g(-1) for inorganic Hg. The relative standard deviation for a 1.0 mu gL(-1) CH(3)Hg standard solution (n = 20) was 1.1%, and 1.3% for a 1.0 mu gL(-1) Hg(2+) standard solution (n = 20). Accuracy was assessed by the analysis of Certified Reference Material (dogfish: DORM-2, NRCC). Recoveries of 99.1% for total Hg and 93.9% inorganic Hg were obtained. Mercury losses were not observed when sample solutions were re-analysed after a seven day period of storage at 4 degrees C.
Resumo:
This study was designed to assess possible associations between biomarkers of mercury (Hg) exposure and oxidative stress in fish-eating Amazonian communities. Clinical samples were obtained from riparians living in the Brazilian Amazon. Biomarkers of oxidative stress (glutathione - GSH, glutathione peroxidase - GSH-Px, catalase - CAT, activity and reactivation index of delta-aminolevulinate dehydratase - ALA-D (R%) were determined in blood. Total Hg was measured in whole blood (B-Hg), plasma (P-Hg) and hair (H-Hg). Association between biomarkers of Hg exposure and oxidative stress were examined using multiple regression models, including age, gender, alcohol consumption, smoking status, fish consumption and then stratified for gender. Significant inverse relations were observed between GSH-Px, GSH, CAT, ALA-D activity and B-Hg or H-Hg (p<0.05). ALA-D reactivation index was positively related to B-Hg (p<0.0001). P-Hg was directly related to ALA-D reactivation index and inversely associated with GSH-Px, GSH, and ALA-D activity (p<0.05). When stratified for gender, women showed significant inverse associations between all biomarkers of Hg exposure and CAT (p<0.05) or GSH (p<0.05), while for men only P-Hg showed a significant inverse relation with GSH (p<0.001). Our results clearly demonstrated an association between Hg exposure and oxidative stress. Moreover, for B-Hg, P-Hg and H-Hg gender differences were present. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple method for mercury speciation in hair samples with a fast sample preparation procedure using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry is proposed. Prior to analysis, 50 mg of hair samples were accurately weighed into 15 mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCl was added to the samples following sonication for 10 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of inorganic mercury (Ino-Hg), methylmercury (Met-Hg) and ethylmercury (Et-Hg) was accomplished in less than 8 min on a C18 reverse phase column with a mobile phase containing 0.05% v/v mercaptoethanol, 0.4% m/v L-cysteine, 0.06 mol L(-1) ammonium acetate and 5% v/v methanol. The method detection limits were found to be 15 ng g(-1), 10 ng g(-1) and 38 ng g(-1), for inorganic mercury, methylmercury and ethylmercury, respectively. Sample throughput is 4 samples h(-1) (duplicate). A considerable improvement in the time of analysis was achieved when compared to other published methods. Method accuracy is traceable to Certified Reference Materials (CRMs) 85 and 86 human hair from the International Atomic Energy Agency (IAEA). Finally, the proposed method was successfully applied to the speciation of mercury in hair samples collected from fish-eating communities of the Brazilian Amazon.
Resumo:
This paper describes a simple method for mercury speciation in seafood samples by LC-ICP-MS with a fast sample preparation procedure. Prior to analysis, mercury species were extracted from food samples with a solution containing mercaptoethanol, L-cysteine and HCl and sonication for 15 min. Separation of mercury species was accomplished in less than 5 min on a C8 reverse phase column with a mobile phase containing 0.05%-v/v mercaptoethanol, 0.4% m/v L-cysteine and 0.06 mol L(-1) ammonium acetate. The method detection limits were found to be 0.25, 0.20 and 0.1 ng g(-1) for inorganic mercury, ethylmercury and methylmercury, respectively. Method accuracy is traceable to Certified Reference Materials (DOLT-3 and DORM-3) from the National Research Council Canada (NRCC). With the proposed method there is a considerable reduction of the time of sample preparation. Finally, the method was applied for the speciation of mercury in seafood samples purchased from the Brazilian market. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A simple and fast method is described for simultaneous determination of methylmercury (MeHg), ethylmercury (Et-Hg) and inorganic mercury (Ino-Hg) in blood samples by using capillary gas chromatography-inductively coupled plasma mass spectrometry (GC-ICP-MS) after derivatization and alkaline digestion. Closed-vessel microwave assisted digestion conditions with tetramethylammonium hydroxide (TMAH) have been optimized. Derivatization by using ethylation and propylation procedures have also been evaluated and compared. The absolute detection limits (using a 1 mu L injection) obtained by GC-ICP-MS with ethylation were 40 fg for MeHg and Ino-Hg, respectively, and with propylation were 50, 20 and 50 fg for MeHg, Et-Hg and Ino-Hg, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). Additional validation is provided based on the comparison of results obtained for mercury speciation in blood samples with the proposed procedure and with a previously reported LC-ICP-MS method. With the new proposed procedure no tedious clean-up steps are required and a considerable improvement of the time of analysis was achieved compared to other methods using GC separation.