118 resultados para maximum likelihood method
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The development of genetic maps for auto-incompatible species, such as the yellow passion fruit (Passiflora edulis Sims f.flavicarpa Deg.) is restricted due to the unfeasibility of obtaining traditional mapping populations based on inbred lines. For this reason, yellow passion fruit linkage maps were generally constructed using a strategy known as two-way pseudo-testeross, based on monoparental dominant markers segregating in a 1:1 fashion. Due to the lack of information from these markers in one of the parents, two individual (parental) maps were obtained. However, integration of these maps is essential, and biparental markers can be used for such an operation. The objective of our study was to construct an integrated molecular map for a full-sib population of yellow passion fruit combining different loci configuration generated from amplified fragment length polymorphisms (AFLPs) and microsatellite markers and using a novel approach based on simultaneous maximum-likelihood estimation of linkage and linkage phases, specially designed for outcrossing species. Of the total number of loci, approximate to 76%, 21%, 0.7%, and 2.3% did segregate in 1:1, 3:1, 1:2:1, and 1:1:1:1 ratios, respectively. Ten linkage groups (LGs) were established with a logarithm of the odds (LOD) score >= 5.0 assuming a recombination fraction : <= 0.35. On average, 24 markers were assigned per LG, representing a total map length of 1687 cM, with a marker density of 6.9 cM. No markers were placed as accessories on the map as was done with previously constructed individual maps.
Resumo:
This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.
Resumo:
We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.
Resumo:
Dados de bovinos compostos foram analisados para avaliar o efeito da epistasia nos modelos de avaliação genética. As características analisadas foram os pesos aos 205 (P205) e 390 dias (P390) e perímetro escrotal aos 390 dias (PE390). As análises foram realizadas pela metodologia de máxima verossimilhança considerando-se dois modelos: o modelo 1 incluiu como covariáveis os efeitos aditivos diretos e maternos, e os não aditivos das heterozigoses para os efeitos diretos e para o materno total, e o modelo 2 considerou também o efeito direto de epistasia. Para comparação dos modelos, foram utilizados o critério de informação de Akaike (AIC) e o critério de informação Bayesiano de Schwartz (BIC), e o teste de razão de verossimilhança. A inclusão da epistasia no modelo de avaliação genética pouco alterou as estimativas de componentes de (co)variâncias genéticas aditivas e, consequentemente, as herdabilidades. O teste de verossimilhança e o critério de Akaike sugeriram que o modelo 2, que inclui a epistasia, apresentou maior aderência aos dados para todas as características analisadas. O critério BIC indicou este modelo como o melhor apenas para P205. Para análise genética dessa população, o modelo que considerou o efeito de epistasia foi o mais adequado.
Resumo:
Data from the slaughter of 24,001 chickens that were part of a selection program for the production of commercial broilers were used to estimate genetic trend for absolute carcass (CW), breast meat (BRW), and leg (LW) weights, and relative carcass (CY), breast meat (BRY), and leg (LY) weights. The components of (co) variance and breeding values of individuals were obtained by the restricted maximum likelihood method applied to animal models. The relationship matrix was composed of 132,442 birds. The models included as random effects, maternal additive genetic and permanent environmental for CW, BRW, LW, CY, and BRY, and only maternal permanent environmental for LY, besides the direct additive genetic and residual effects, and as fixed effects, hatch week, parents' mating group and sex. The estimates of genetic trend were obtained by average regression of breeding value on generation, and the average genetic trend was estimated by regression coefficients. The genetic trends for CW (+ 6.0336 g/generation), BRW (+ 3.6723 g/generation), LW (+ 1.5846 g/generation), CY (+ 0.1195%/generation), and BRY (+ 0.1388%/generation) were positive, and they were in accordance with the objectives of the selection program for these traits. The genetic trend for LY(-0.0019%/generation) was negative, possibly due to the strong emphasis on selection for BRY and the negative correlations between these two traits.
Resumo:
The effect of genetic and non-genetic factors for carcass, breast meat and leg weights, and yields of a commercial broiler line were investigated using the restricted maximum likelihood method, considering four different animal models, including or excluding maternal genetic effect with covariance between direct and maternal genetic effects, and maternal permanent environmental effect. The likelihood ratio test was used to determine the most adequate model for each trait. For carcass, breast, and leg weight, and for carcass and breast yield, maternal genetic and permanent environmental effects as well as the covariance between direct and maternal genetic effects were significant. The estimates of direct and maternal heritability were 0.17 and 0.04 for carcass weight, 0.26 and 0.06 for breast weight, 0.22 and 0.02 for leg weight, 0.32 and 0.02 for carcass yield, and 0.52 and 0.04 for breast yield, respectively. For leg yield, maternal permanent environmental effect was important, in addition to direct genetic effects. For that trait, direct heritability and maternal permanent environmental variance as a proportion of the phenotypic variance were 0.43 and 0.02, respectively. The results indicate that ignoring maternal effects in the models, even though they were of small magnitude (0.02 to 0.06), tended to overestimate direct genetic variance and heritability for all traits.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
The total meat yield in a beef cattle production cycle is economically very important and depends on the number of calves born per year or birth season, being directly related to reproductive potential. Accumulated Productivity (ACP) is an index that expresses a cow`s capacity to give birth regularly at a young age and to wean animals of greater body weight. Using data from cattle participating in the ""Program for Genetic Improvement of the Nelore Breed"" (PMGRN - Nelore Brasil), bi-trait analyses were performed using the Restricted Maximum Likelihood method based on an ACP animal model and the following traits: age at first calving (AFC), female body weight adjusted for 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted for 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. Median estimated ACP heritability was 0.19 and the genetic correlations with AFC, BW365, BW450, SC365, SC450, SC550 and SC730 were 0.33, 0.70, 0.65, 0.08, 0.07, 0.12 and 0.16, respectively. ACP increased and AFC decreased over time, revealing that the selection criteria genetically improved these traits. Selection based on ACP appears to favor the heaviest females at 365 and 450 days of age who showed better reproductive performance as regards AFC. Scrotal circumference was not genetically associated with ACP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
P>Age at first calving (AFC) measures the entry of heifers into the beef cattle production system. This trait can be used as a selection criterion for earlier reproductive performance. Using data from Nelore cattle participating in the `Program for Genetic Improvement of the Nelore Breed` (PMGRN-Nelore Brazil), bi-trait analyses were performed using the restricted maximum likelihood method, based on an AFC animal model and the following traits: female body weight adjusted to 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted to 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. The heritability estimates for AFC ranged from 0.02 +/- 0.02 to 0.04 +/- 0.02. The estimates of additive direct heritabilities (with standard error) for BW365, BW450, SC365, SC450, SC550 and SC730 were 0.36 +/- 0.07, 0.38 +/- 0.07, 0.48 +/- 0.07, 0.65 +/- 0.07, 0.64 +/- 0.07 and 0.42 +/- 0.07, respectively, and the genetic correlations with AFC were -0.38, -0.33, 0.10, -0.13, -0.13 and 0.06, respectively. In the herds studied, selection for SC365, SC450, SC550 or SC730 should not cause genetic changes in AFC. Selection based on BW365 or BW450 would favor smaller AFC breeding values. However, the low magnitude of direct heritability estimates for AFC in these farms indicates that changes in phenotypical expression depend mostly on non-genetic factors.
Resumo:
The aim of the present study was to evaluate the genetic and environmental factors affecting records of longissimus muscle area (LMA) and back fat thickness (BF) obtained between the 12th and 13th ribs, and rump fat thickness (RF) between the hook and pin bones, measured by real-time ultrasound in Nelore cattle. Also, weight records of 22,778 animals born from 1998 to 2003, in ten farms across six Brazilian states were used. Carcass traits as measured by ultrasound of the live animal were recorded from 2002 to 2004 in 2590 males and females with ages varying from 450 to 599 days. Fixed models including farm, year and season of birth, sex and type of feed effects, and the covariates age of dam (AOD) and age of animal at measurement were used to study the effect of environmental factors on these traits. The genetic parameters for LMA, BF and RF were estimated with two and three-trait animal models with 120-day weights using a restricted maximum likelihood method. All environmental effects significantly affected carcass traits, with the exception of year of birth for BF and RF and AOD for LMA. The heritability estimates for LMA, BF and RF were 0.35, 0.51 and 0.39, respectively. Standard errors obtained in one-trait analyses were from 0.07 to 0.09. Genetic correlation estimates between LMA and the two traits of subcutaneous fat were low (close to zero) and 0.74 between BF and RF, indicating that the selection for LMA should not cause antagonism in the genetic improvement of subcutaneous fat measured by real-time ultrasound. (C) 2007 Elsevier B.V. All fights reserved.
Resumo:
In this paper an alternative approach to the one in Henze (1986) is proposed for deriving the odd moments of the skew-normal distribution considered in Azzalini (1985). The approach is based on a Pascal type triangle, which seems to greatly simplify moments computation. Moreover, it is shown that the likelihood equation for estimating the asymmetry parameter in such model is generated as orthogonal functions to the sample vector. As a consequence, conditions for a unique solution of the likelihood equation are established, which seem to hold in more general setting.
Resumo:
We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique.
Resumo:
This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A five-parameter distribution so-called the beta modified Weibull distribution is defined and studied. The new distribution contains, as special submodels, several important distributions discussed in the literature, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among others. The new distribution can be used effectively in the analysis of survival data since it accommodates monotone, unimodal and bathtub-shaped hazard functions. We derive the moments and examine the order statistics and their moments. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set is used to illustrate the importance and flexibility of the new distribution.