74 resultados para malaria antigen
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/ disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290-307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies.
Resumo:
The main purpose of this research was to analyze the relation of the genetic polymorphisms frequently expressed by antigen-presenting cells, erythrocytes and malaria susceptibility/resistance with the human malaria infection cases. The sample used consisted of 23 Plasmodium vivax ( Pv)- and P. falciparum ( Pf)-infected patients, and 21 healthy individuals as a control group, from the Baixo Amazonas population in Para, Brazil. The Asp299Gly polymorphisms in the Toll-like receptor 4 ( TLR4), and Gly42Asp, Arg89Cys, Ala100Thr, and T-33C in the Duffy gene ( FY) were analyzed by restriction fragment length polymorphism-polymerase chain reaction. The Lys1590Glu and Arg1601Gly polymorphisms in the complement receptor type 1 (CR1) were analyzed by DNA sequencing. According to the results obtained and statistical analysis considering a significance level or alpha = 0.01, we conclude that the low heterozygote frequency (2.27%) for the Asp299Gly mutation, detected in the TLR4 gene, is not related to the Pv and Pf infections in the patients analyzed. Also, the promoter region GATA-1 analysis of the FY gene in the Pv-infected patients showed that the heterozygote frequency for the T-33C mutation (11.36% of the infected patients and 20.45% of the control patients) is not related to infection resistance. Regarding the CR1 gene, the observed heterozygote frequency (9.09%) for the Arg1601Gly mutation in Pf-infected patients when compared to heterozygote frequency in the control group (18.18%) suggests that there is no correlation with infection resistance.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) of Plasmodium sp. has been suggested as a vaccine candidate against malaria. This protein seems to be involved in merozoite invasion and its extra-cellular portion contains three distinct domains: DI, DII, and DIII. Previously, we described that Plasmodium vivax AMA-1 (PvAMA-1) ectodomain is highly immunogenic in natural human infections. Here, we expressed each domain, separately or in combination (DI-II or DII-III), as bacterial recombinant proteins to map immunodominant epitopes within the PvAMA-1 ectodomain. IgG recognition was assessed by ELISA using sera of P. vivax-infected individuals collected from endemic regions of Brazil or antibodies raised in immunized mice. The frequencies of responders to recombinant proteins containing the DII were higher than the others and similar to the ones observed against the PvAMA-1 ectodomain. Moreover, ELISA inhibition assays using the PvAMA-1 ectodomain as substrate revealed the presence of many common epitopes within DI-II that are recognized by human immune antibodies. Finally, immunization of mice with the PvAMA-1 ectodomain induced high levels of antibodies predominantly to DI-II. Together, our results indicate that DII is particularly immunogenic during natural human infections, thus indicating that this region could be used as part of an experimental sub-unit vaccine to prevent vivax malaria. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The Apical Membrane Antigen 1 (AMA-1) is considered a promising candidate for development of a malaria vaccine against asexual stages of Plasmodium. We recently identified domain II (DII) of Plasmodium vivax AMA-1 (PvAMA-1) as a highly immunogenic region recognised by IgG antibodies present in many individuals during patent infection with P. vivax. The present study was designed to evaluate the immunogenic properties of a bacterial recombinant protein containing PvAMA-1 DII. To accomplish this, the recombinant protein was administered to mice in the presence of each of the following six adjuvants: Complete/Incomplete Freund`s Adjuvant (CFA/IFA), aluminium hydroxide (Alum), Quil A, QS21 saponin, CpG-ODN 1826 and TiterMax. We found that recombinant DII was highly immunogenic in BALB/c mice when administered in the presence of any of the tested adjuvants. Importantly, we show that DII-specific antibodies recognised the native AMA-1 protein expressed on the surface of P. vivax merozoites isolated from the blood of infected patients. These results demonstrate that a recombinant protein containing PvAMA-1 DII is immunogenic when administered in different adjuvant formulations, and indicate that this region of the AMA-1 protein should continue to be evaluated as part of a subunit vaccine against vivax malaria. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Immune evasion by Plasmodium falciparum is favored by extensive allelic diversity of surface antigens. Some of them, most notably the vaccine-candidate merozoite surface protein (MSP)-1, exhibit a poorly understood pattern of allelic dimorphism, in which all observed alleles group into two highly diverged allelic families with few or no inter-family recombinants. Here we describe contrasting levels and patterns of sequence diversity in genes encoding three MSP-1-associated surface antigens of P. falciparum, ranging from an ancient allelic dimorphism in the Msp-6 gene to a near lack of allelic divergence in Msp-9 to a more classical multi-allele polymorphism in Msp-7 Other members of the Msp-7 gene family exhibit very little polymorphism in non-repetitive regions. A comparison of P. falciparum Msp-6 sequences to an orthologous sequence from P. reichenowi provided evidence for distinct evolutionary histories of the 5` and 3` segments of the dimorphic region in PfMsp-6, consistent with one dimorphic lineage having arisen from recombination between now-extinct ancestral alleles. In addition. we uncovered two surprising patterns of evolution in repetitive sequence. Firsts in Msp-6, large deletions are associated with (nearly) identical sequence motifs at their borders. Second, a comparison of PfMsp-9 with the P. reichenowi ortholog indicated retention of a significant inter-unit diversity within an 18-base pair repeat within the coding region of P. falciparum, but homogenization in P. reichenowi. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.
Resumo:
A photodynamic effect occurs when photosensitiser molecules absorb light and dissipate the absorbed energy by transferring it to biological acceptors (usually oxygen), generating an excess of reactive species that are able to force cells into death pathways. Several tropical diseases present physiopathological aspects that are accessible to the application of a photosensitiser and local illumination. In addition, disease may be transmitted through infected blood donations, and many of the aetiological agents associated with tropical diseases have been shown to be susceptible to the photodynamic approach. However, there has been no systematic investigation of the application of photoantimicrobial agents in the various presentations, whether to human disease or to the disinfection of blood products or even as photo-insecticides. We aim in this review to report the advances in the photoantimicrobial approach that are beneficial to the field of anti-parasite therapy and also have the potential to facilitate the development of low-cost/high-efficiency protocols for underserved populations.
Resumo:
Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.
Resumo:
A study was carried out in the area of influence of the Porto Primavera Hydroelectric Power Station, in western São Paulo State, to investigate ecological and epidemiological aspects of malaria in the area and monitor the profile of the anopheline populations following the environmental changes brought about by the construction of the lake. Mosquitoes captured were analyzed by standardized indicator species analysis (ISA) before and during different flooding phases (253 m and 257 m elevations). The local human population was studied by means of parasitological (thin/thick blood smears), molecular (PCR) and serological tests. Serological tests consisted of Enzyme Linked Immunosorbent Assay (ELISA) with synthetic peptides of the circumsporozoite protein (CSP) from classic Plasmodium vivax, P. vivax variants (VK247 and "vivax-like"), P. malariae and P. falciparum and Indirect Immunofluorescence Assay (IFA) with asexual forms of P. vivax, P. malariae and P. falciparum. The results of the entomological survey indicated that, although the Anopheles darlingi population increased after the flooding, the population density remained very low. No malaria, parasite infection or DNA was detected in the inhabitants of the study area. However, there was a low frequency of antibodies against asexual forms and a significant prevalence of antibodies against P. vivax, P. vivax variants, P. falciparum and P. malariae; the presence of these antibodies may result from recent or less recent contact with human or simian Plasmodium (a parallel study in the same area revealed the existence of a sylvatic cycle). Nevertheless, these results suggest that, as in other places where malaria is present and potential vectors circulate, the local epidemiological conditions observed could potentially support the transmission of malaria in Porto Primavera Lake if infected individuals are introduced in sufficient numbers. Further studies are required to elucidate the phenomena described in this paper.
Resumo:
Feline Immunodeficiency Virus is a worldwide infection and is considered a significant pathogen. The diagnosis of FIV infections is mainly based on commercially available rapid tests that are highly expensive in Brazil, hence it is rarely performed in the country. Furthermore, lentiviruses grow slowly and poorly in tissue cultures, making the production of viral antigen by classic means and thus the establishment of FIV immunodiagnosis impracticable. In order to deal with this, recombinant DNA techniques were adopted to produce the protein p24, a viral capsid antigen. The protein's reactivity evaluation analyzed by Western blot indicated that this recombinant antigen can be a useful tool for the immunodiagnostic of FIV infections.
Resumo:
No Espírito Santo, os casos de malária autóctone estão distribuídos na região serrana próximo aos fragmentos de Mata Atlântica. Uma vez que alguns aspectos da doença são obscuros, a detecção das possíveis espécies de vetores pode auxiliar na elucidação de incertezas epidemiológicas. Estudos entomológicos e de infecção natural foram realizados com anofelinos (Diptera: Culicidae) capturados no município de Santa Tereza, ES. Capturas mensais foram realizadas de março de 2004 a fevereiro de 2006. Armadilhas CDC-CO2 foram utilizadas do crepúsculo (18:00h) ao amanhecer (6:00h), para capturar anofelinos nos seguintes habitats: próximo ao domicílio e área aberta (solo), margem e interior da mata (solo e copa). Armadilhas Shannon também foram utilizadas nos mesmos locais que as de CDC-CO2. Capturou-se o total de 2.290 anofelinos distribuídos em 10 espécies. A maior frequência relativa foi de Anopheles (Kerteszia) cruzii Dyar & Knab / A.(K.) homunculus Komp, sendo a maioria capturada em CDC-CO2 instalada na copa da mata. A principal espécie capturada em armadilha Shannon foi A.(Nyssorhynchus) strodei Root. O maior número de anofelinos foi capturado entre julho e setembro das 18:00h às 22:00h. Provavelmente A.(K.) cruzii é responsável pela transmissão da malária dentro ou próximo aos fragmentos de Mata Atlântica. Entretanto, a participação de outras espécies não pode ser ignorada, visto que 53 por cento da amostragem foi constituída pelo subgênero Nyssorhynchus. A detecção de Plasmodium vivax no tórax de A. cruzii, A. parvus (Chagas) e A. galvaoi Causey, Deane & Deane por meio de PCR reforça esse argumento
Resumo:
Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naive T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model.
Resumo:
Background: Plasmodium vivax circumsporozoite variants have been identified in several geographical areas. The real implication of the genetic variation in this region of the P. vivax genome has been questioned for a long time. Although previous studies have observed significant association between VK210 and the Duffy blood group, we present here that evidences of this variation are limited to the CSP central portion. Methods: The phylogenetic analyses were accomplished starting from the amplification of conserved domains of 18 SSU RNAr and Cyt B. The antibodies responses against the CSP peptides, MSP-1, AMA-1 and DBP were detected by ELISA, in plasma samples of individuals infected with two P. vivax CS genotypes: VK210 and P. vivax-like. Results: These analyses of the two markers demonstrate high similarity among the P. vivax CS genotypes and surprisingly showed diversity equal to zero between VK210 and P. vivax-like, positioning these CS genotypes in the same clade. A high frequency IgG antibody against the N- and C-terminal regions of the P. vivax CSP was found as compared to the immune response to the R- and V-repetitive regions (p = 0.0005, Fisher's Exact test). This difference was more pronounced when the P. vivax-like variant was present in the infection (p = 0.003, Fisher's Exact test). A high frequency of antibody response against MSP-1 and AMA-1 peptides was observed for all P. vivax CS genotypes in comparison to the same frequency for DBP. Conclusions: This results target that the differences among the P. vivax CS variants are restrict to the central repeated region of the protein, mostly nucleotide variation with important serological consequences.
Resumo:
Circulation CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) have been associated with the delicate balancing between control of overwhelming acute malaria infection and prevention of immune pathology due to disproportionate inflammatory responses to erythrocytic stage of the parasite. While the role of Tregs has been well-documented in murine models and P. falciparum infection, the phenotype and function of Tregs in P. vivax infection is still poorly characterized. In the current study, we demonstrated that patients with acute P. vivax infection presented a significant augmentation of circulating Tregs producing anti-inflammatory (IL-10 and TGF-beta) as well as pro-inflammatory (IFN-gamma, IL-17) cytokines, which was further positively correlated with parasite burden. Surface expression of GITR molecule and intracellular expression of CTLA-4 were significantly upregulated in Tregs from infected donors, presenting also a positive association between either absolute numbers of CD4(+)CD25(+)FoxP3(+)GITR(+) or CD4(+)CD25(+)FoxP3(+)CTLA-4(+) and parasite load. Finally, we demonstrate a suppressive effect of Treg cells in specific T cell proliferative responses of P. vivax infected subjects after antigen stimulation with Pv-AMA-1. Our findings indicate that malaria vivax infection lead to an increased number of activated Treg cells that are highly associated with parasite load, which probably exert an important contribution to the modulation of immune responses during P. vivax infection.
Resumo:
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.