418 resultados para localized electrochemical analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A series of new ruthenium-iron based derivatives [Ru(eta(5)-Cp)(dppf)Cl] (1), [Ru(eta(5)-Cp)(dppf)Br] (2), [Ru(eta(5)-Cp)(dppf)I] (3) and [Ru(eta(5)-Cp)(dppf)N(3)] (4) were obtained by reactions of [Ru(eta(5)-Cp)(PPh(3))(2)Cl] with 1,1`-bis(diphenylphosphino) ferrocene (dppf) and characterized by IR, NMR ((1)H, (13)C and (31)P), (57)Fe Mossbauer spectroscopy and cyclic voltammetry. Additionally, the compound (3) was structurally characterized by X-ray crystallography, and the results were as follows: orthorhombic, Pbca, a = 18.2458(10), b = 20.9192(11), c = 34.4138(19) a""<<, alpha = beta = gamma = 90A degrees, V = 13135.3(12) a""<<(3) and Z = 16.
Resumo:
Complex fac-[RuCl(3)(NO)(P-N)] (1) was synthesized from the reaction of [RuCl(3)(H(2)O)(2)(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl(3)(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer, cis-[RuCl(3)(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo-or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated. The complexes were characterized by NMR ((31)P{(1)H}, (15)N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The (31)P{(1)H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The (1)H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH(2)Cl(2) solution presented 1866 and 1872 cm(-1) for (1) and 1841 and 1860 cm(-1) for (2). Electrochemical analysis revealed a irreversible reduction attributed to Ru(II)-NO(+) -> Ru(II)-NO(0) at -0.81 V and -0.62 V, for (1) and (2), respectively; the process Ru(II) -> Ru(III), as expected, is only observed around 2.0 V, for both complexes. Studies were conducted using (15)NO and both complexes were isolated with (15)N-enriched NO. Upon irradiation, the complex fac-[RuCl(3)(NO)(P-N)] (1) does not exchange (14)NO by (15)NO, while complex mer, trans-[RuCl(3)(NO)(P-N)] (2) does. Complex mer, trans-[RuCl(3)((15)NO)(P-N)] (2`) was obtained by direct reaction of mer, trans-[RuCl(3)(NO)(P-N)] (2) with (15)NO and the complex fac-[RuCl(3)((15)NO)(P-N)] (1`) was obtained by thermal-isomerization of mer, trans-[RuCl(3)((15)NO)(P-N)] (2`). DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
A comparative study of two different conductive carbon-black pigments, Vulcan XC-72 R and Printex L6, for the electrogeneration of hydrogen peroxide (H(2)O(2)) by reducing dissolved oxygen in an alkaline solution was performed. The materials were physically characterized by X-ray diffraction (XRD), Fourier transform infrared attenuated total reflection (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). XRD shows the presence of SO(2) and ATR-FTIR technique indicates a difference in NO and SO(2) functional groups between the two carbon pigments. XPS indicated presence of SO and NO and more oxygenated acid species on Printex L6. A rotating ring-disk electrode was used for electrochemical analysis of the oxygen reduction reaction (ORR). The results showed that the Printex L6 was better than Vulcan XC-72 R for H(2)O(2) production. Results also indicate that the number of electrons transferred in the ORR for Printex L6 and Vulcan XC-72 R were 2.2 and 2.9, respectively, while the percentages of H(2)O(2) formed were 88% and 51%. Scanning electrochemistry microscopy images confirmed the higher amount of H(2)O(2) formed in the Printex L6 pigment. Printex L6 was shown to be a more promising for H(2)O(2) production than Vulcan XC-72 R, while the latter was shown to have more potential for fuel cells. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.
Resumo:
This paper presents the study of photochemical behavior of polycyclic aromatic hydrocarbons (PAHs), potential pollutants in secondary reactions in aerosols, through Raman spectroscopy compared with its electrochemical behavior. The PAHs studied include pyrene, anthracene, phenanthrene and fluorene. These were adsorbed onto TiO2 and irradiated with ultraviolet light (254 nm). Their electrochemical oxidation was studied by in situ Surface-enhanced Raman Scattering (SERS) and led to the formation of carbonyl-containing products. Oxidized intermediates bearing the C=O group were also formed during photodegradation. The joint analysis of the photodegradation data with those produced by electrochemical means - using spectroscopic techniques for the identification and characterization of the products - revealed the formation of identical products for anthracene, but not for pyrene. A reasonable explanation for this difference in results is that photochemical and electrochemical oxidation reactions proceed via different mechanisms. While photocatalytic degradation over TiO2 is initiated by hydroxyl radicals, electrochemical oxidation is initiated by the direct electron transfer from adsorbed PAH to the electrode, generating PAH cation radicals that undergo subsequent reactions.
Resumo:
An alternative technique for the fabrication of disposable electrochemical microcells containing working, reference and auxiliary electrodes on a single device is reported. The procedure is based on thermal-transfer of toner masks onto CD-R (recordable compact discs) gold surfaces to define the layout of the electrodes (contour). In a subsequent step, the layout is manually painted with a permanent marker pen. The unprotected gold surface is conveniently etched (chemical corrosion) and the ink is then easily removed with ethanol, generating gold surfaces without contamination. The final and reproducible area of the electrodes is defined by heat transference of a second toner mask. Silver epoxy is deposited on one of the gold bands which is the satisfactorily used as reference electrode. These microcells were electrochemically characterized by cyclic, linear, and square wave voltammetry, and several electroactive species were used as model systems. The area reproducibility of the electrodes for different microcells was studied and a relative standard deviation better than 1,0% (n = 10) was obtained. Disposable electrochemical microcells were successfully used in analysis of liquid samples with volumes lower than 200 µL and good stability and reproducibility (RSD less than 2.0%) were achieved. These microcells were also evaluated for quantification of paracetamol and dipyrone in pharmaceutical formulations.
Resumo:
An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions ( pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at E-p = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.
Resumo:
This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 x 10(-5) to 5.0 x 10(-2) mol L(-1)) was obtained, with a sensitivity of 2579 (+/- 129) mu A L mu mol(-1). The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 mu mol L(-1), respectively. The analytical frequency was 51 samples h(-1), and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.
Resumo:
This paper aims to study evolution of increase, distribution and classification of pits in 310S austenitic stainless steels obtained in the state as-received and heat-treated under different exposure times in saline. This work applicability has been based on a technique development for morphologic characterization of localized corrosion associated with description aspects of shapes, size and population-specific parameters. Methodology has been consisted in the following steps: specimens preparation, corrosion tests via salt spray in different conditions, microstructural analysis, pits profiles analysis and images analysis, digital processing and image analysis in order to characterize the pits distribution, morphology and size. Results obtained in digital processing and profiles image analysis have been subjected to statistical analysis using median as parameter in the alloy as received and treated. The alloy as received displays the following morphology: hemispheric pits> transition region A> transition region B> irregular> conic. The pits amount in the treated alloy at each exposure time is: transition region B> hemispherical> transition region A> conic> irregular.
Resumo:
Polarization measurements were conducted to monitor the corrosion behavior of superduplex stainless steel ASTM A995M-Gr.SA/EN 10283-Mat#1.4469(GX2CrNiMo26-7-4) when exposed to a) an electrolyte containing 22,700 parts per million (ppm) of chloride ions at seven different temperatures and b) an electrolyte at 25 GC and different chloride ion concentrations (5800, 22,700, 58,000 and 80,000 ppm of Cl(-)). The polarization curves indicate that the passive films formed are only slightly affected by NaCl concentration, but the pitting potential decreases drastically increasing the temperature, in particular >60 degrees C. The image analysis of the microstructure after potentiodynamic polarization showed that the pitting number and size vary in function of the temperature of the tested medium. Nyquist diagrams were determined by electrochemical impedance spectroscopy to characterize the resistance of the passive layer. According to Nyquist plots, the arc polarization resistance decreases increasing the temperature due to a catalytic degradation of the oxide passive films. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.
Resumo:
A method for the determination of artemether (ART) and its main metabolite dihydroartemisinin (DHA) in plasma employing liquid-phase microextraction (LPME) for sample preparation prior to liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed. The analytes were extracted from 1 nil, of plasma utilizing a two-phase LPME procedure with artemisinin as internal standard. Using the optimized LPME conditions, mean absolute recovery rates of 25 and 32% for DHA and ART, respectively, were achieved using toluene-n-octanol (1:1, viv) as organic phase with an extraction time of 30 min. After extraction, the analytes were resolved within 5 min using a mobile phase consisting of methanol-ammonium acetate (10 mmol L(-1) pH 5.0, 80:20. v/v) on a laboratory-made column based on poly(methyltetradecylsiloxane) attached to a zirconized-silica support. MS-MS detection was employed using an electrospray interface in the positive ion mode. The method developed was linear over the range of 5-1000 ng mL(-1) for both analytes. Precision and accuracy were within acceptable levels of confidence (<15%). The assay was applied to the determination of these analytes in plasma from rats treated with ART. The two-phase LPME procedure is affordable and the solvent consumption was very low compared to the traditional methods of sample preparation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Poly(pyrrole) (PPY) coating was prepared on a stainless-steel (SS) wire for solid-phase microextraction (SPME) by electrochemical deposition (cyclic voltammetric). The PPY was evaluated by analyzing new-generation antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline) in plasma sample by SPME and liquid chromatography with UV detection (LC-UV). The effect of electrolyte Solution (lithium perchlorate or tetrabutylammonium perchlorate) and the number of cycles (50, 100 or 200) applied during the polymerization process on the SPME performance was evaluated. Important factors in the optimization of SPME efficiency such as extraction time, temperature, pH, influence of plasma proteins on sorption mechanisms, and desorption conditions are discussed. The SPME-PPY/LC method showed to be linear in concentrations ranging from the limit of quantification (LOQ) to 1200 ng mL(-1). The LOQ values range from 16 to 25 ng mL-1. The inter-day precision of the SPME-PPY/LC method presented coefficient of variation (CV) lower than 15%. Based on analytical validation results, the SPME-PPY/LC methodology showed to be adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the SPME-PPY/LC method was applied to the analysis of plasma samples from elderly depressed patients. (c) 2009 Elsevier B.V. All rights reserved,
Resumo:
Aim: To evaluate percutaneous cryotherapy as a primary treatment option for prostate cancer, comparing different risk groups. Patients and Methods: Forty-seven prostate cryoablation procedures were performed on 44 patients. Patients median age was 70.9, and average pretreatment PSA of 13.8 ng/dl. Patients were divided into low-risk (13 patients), high-risk (24 patients) and radiation failure patients (7 patients). The follow-up period ranged from 18 to 60 months (median 41 months). Results: In the low-risk group, we found after 12 and 24 months of follow-up, 92 and 86% of patients free of PSA relapse (PSA < 1 ng/ml), respectively. In the high-risk group, the PSA failure was 39 and 52.9%. For the radiation failure group, 86 and 71.4% of patients had PSA below 1 ng/dl. At 48 months of follow-up, 80% of the low-risk patients, 42.8% of the high-risk group and 71.4% of the radiation failure group were free of PSA relapse. The complication rates were low, with 13% of urinary incontinence and no cases of rectal injury. Conclusion: Prostate cryoablation is a viable and promising minimally invasive alternative for localized or locally advanced prostate cancer patients. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
Mucosal leishmaniasis (ML) follows localized cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. Proinflammatory responses mediate CL self-healing but are exaggerated in ML Proinflammatory monocyte chemoattractant protein 1 (MCP-1; encoded by CCL2) is associated with CL We explore its role in CL/ML through analysis of the regulatory CCL2 -2518 bp promoter polymorphism in CL/ML population samples and families from Brazil. Genotype frequencies were compared among ML/CL cases and control groups using logistic regression and the family-based association test (FBAT). MCP-1 was measured in plasma and macrophages. The GG recessive genotype at CCL2 -2518 bp was more common in patients with ML (N = 67) than in neighborhood control (NC; N = 60) subjects (OR 1.78; 95% Cl 1.01-3.14; P = 0.045), than in NC combined with leishmanin skin-test positive (N = 60) controls (OR 4.40; 95% CI 1.42-13.65; P = 0.010), and than in controls combined with CL (N = 60) patients (OR 2.78; 95% CI 1.13-6.85; P = 0.045). No associations were observed for CL compared to any groups. FBAT (91 ML and 223 CL cases in families) confirmed recessive association of ML with allele G (Z = 2.679; P = 0.007). Higher levels of MCP-1 occurred in plasma (P = 0.03) and macrophages (P < 0.0001) from GG compared to AA individuals. These results suggest that high MCP-1 increases risk of ML (C) 2010 Elsevier B.V. All rights reserved.