118 resultados para light-harvesting devices

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fabrication and electroluminescent properties of devices containing europium complexes of general formula [Eu(ACIND)(3)(TPPO)(2)], where ACIND, 2-acyl-1,3-indandionate ligands: and TPPO, triphenylphosphine oxide. as emitter layers are discussed. The double-layer devices based on these complexes present the following configurations: device 1: ITO/TPD/[Eu(AlND)(3)(TPPO)(2)]/Al: device 2: ITO/TPD/[Eu(ISOV-IND)(3)(TPPO)(2)]/Al and device 3: ITO/TPD/[Eu(BIND)(3)(TPPO)(2)]/Al, where AlND, 2-acetyl-1,3-indandionate; ISOVIND, 2-isovaleryl-1,3-indandionate; and BIND, 2-benzoyl-1,3-indandionate, respectively. These devices exhibited photo and electroluminescent emissions. An important characteristic presented by devices is that their electroluminescent (EL) spectra, in the region of (5)D(0) -> (7)F(J) (J = 0, 1, 2, 3 and 4) transitions of Eu(3+) ion, show profiles that are different from photoluminescent (PL) ones. In addition to narrow bands arising from intraconfigurational-4f(6) transitions, devices 1 and 2 also exhibited a broad band with maximum at around 500 nm which is assigned to electrophosphorescence from the indandionate ligands. On the other hand, EL spectra of device 3 present only narrow bands from (5)D(0) -> (7)F(J) transitions. [Eu(ACIND)(3)(TPPO)(2)] complexes are promising candidates to prepare efficient organic light-emitting devices (OLEDs) when compared with those containing Eu(3+)-complexes of aliphatic beta-diketonate anions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensors and actuators based on piezoelectric plates have shown increasing demand in the field of smart structures, including the development of actuators for cooling and fluid-pumping applications and transducers for novel energy-harvesting devices. This project involves the development of a topology optimization formulation for dynamic design of piezoelectric laminated plates aiming at piezoelectric sensors, actuators and energy-harvesting applications. It distributes piezoelectric material over a metallic plate in order to achieve a desired dynamic behavior with specified resonance frequencies, modes, and enhanced electromechanical coupling factor (EMCC). The finite element employs a piezoelectric plate based on the MITC formulation, which is reliable, efficient and avoids the shear locking problem. The topology optimization formulation is based on the PEMAP-P model combined with the RAMP model, where the design variables are the pseudo-densities that describe the amount of piezoelectric material at each finite element and its polarization sign. The design problem formulated aims at designing simultaneously an eigenshape, i.e., maximizing and minimizing vibration amplitudes at certain points of the structure in a given eigenmode, while tuning the eigenvalue to a desired value and also maximizing its EMCC, so that the energy conversion is maximized for that mode. The optimization problem is solved by using sequential linear programming. Through this formulation, a design with enhancing energy conversion in the low-frequency spectrum is obtained, by minimizing a set of first eigenvalues, enhancing their corresponding eigenshapes while maximizing their EMCCs, which can be considered an approach to the design of energy-harvesting devices. The implementation of the topology optimization algorithm and some results are presented to illustrate the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the influence of different photopolymerization (halogen, halogen soft-start and LED) systems on shear bond strength (SBS) and marginal microleakage of composite resin restorations. Forty Class V cavities (enamel and dentin margins) were prepared for microleakage assessment, and 160 enamel and dentin fragments were prepared for the SBS test, and divided into 4 groups. Kruskal-Wallis and Wilcoxon tests showed statistically significant difference in microleakage between the margins (p < 0.01) with incisal margins presenting the lowest values. Among the groups, it was observed that, only at the cervical margin, halogen soft-start photo polymerization presented statistically significant higher microleakage values. For SBS test, ANOVA showed no statistical difference (p > 0.05) neither between substrates nor among groups. It was concluded that Soft-Start technique with high intensity end-light influenced negatively the cervical marginal sealing, but the light-curing systems did not influence adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advantages offered by the electronic component LED (Light Emitting Diode) have resulted in a quick and extensive application of this device in the replacement of incandescent lights. In this combined application, however, the relationship between the design variables and the desired effect or result is very complex and renders it difficult to model using conventional techniques. This paper consists of the development of a technique using artificial neural networks that makes it possible to obtain the luminous intensity values of brake lights using SMD (Surface Mounted Device) LEDs from design data. This technique can be utilized to design any automotive device that uses groups of SMD LEDs. The results of industrial applications using SMD LED are presented to validate the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic field effects on the conductivity of different types of organic devices: undoped and dye doped aluminium (III) 8-hydroxyquinoline (Alq(3))-based organic light emitting diodes (OLEDs), electron-only Alq(3)-based diodes, and a hole-only N,N`-diphenyl-N,N`-bis(1-naphthyl)1,1`-biphenyl-4,4`-diamine (alpha-NPD)-based diode were studied at room temperature. Only negative magnetoresistance (MR) was observed for the Alq(3)-based devices. The addition of a rubrene dye in Alq(3)-based OLEDs quenches the MR by a factor of 5. The alpha-NPD hole-only device showed only positive MR. Our results are discussed with respect to the actual models for MR in organic semiconductors. Our results are in good agreement with the bipolaron model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the effects of intrapulpal temperature changes induced by a quartz tungsten halogen (QTH) and a light emitting diode (LED) curing units on the metabolism of odontoblast-like cells. Methods: Thirty-six 0.5 mm-thick dentin discs obtained from sound human teeth were randomly assigned into three groups: QTH, LED and no light (control). After placement of the dentin discs in pulp chamber devices, a thermistor was attached to the pulpal surface of each disc and the light sources were applied on the occlusal surface. After registering the temperature change, odontoblast-like cells MDPC-23 were seeded on the pulpal side of the discs and the curing lights were again applied. Cell metabolism was evaluated by the MTT assay and cell morphology was assessed by SEM. Results: In groups QTH and LED the intrapulpal temperature increased by 6.4 degrees C and 3.4 degrees C, respectively. The difference between both groups was statistically significant (Mann-Whitney; P< 0.05). QTH and LED reduced the cell metabolism by 36.4% and 33.4%, respectively. Regarding the cell metabolism, no statistically significant difference was observed between both groups (Mann-Whitney; P> 0.05). However, when compared to the control, only QTH significantly reduced the cell metabolism (Mann-Whitney; P< 0.05). It was concluded that the irradiance of 0.5 mm-thick human dentin discs with a QTH in comparison to a LED curing unit promoted a higher temperature rise, which propagates through the dentin negatively affecting the metabolism of the underlying cultured pulp cells. (Am J Dent 2009;22:151-156).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This in situ/ex vivo study assessed the erosive potential of a light cola drink when compared to a regular one. Methods: During 2 experimental 14-days crossover phases, eight volunteers wore palatal devices with 2 human enamel blocks. The groups under study were: group light, erosive challenge with light cola drink and group regular, erosive challenge with regular cola drink. During 14 days, erosive challenges were performed extraorally 3X/day. In each challenge, the device was immersed in 150 ml of light cola (group light) or regular cola (group regular) for 5 min. Erosion was analysed by surface profilometry (mu m) and surface microhardness change (%SMH). The data were statistically analyzed using paired t test (p<0.05). Results: Group light (0.6 +/- 0.2 mu m) showed significantly lesser wear than group regular (3.1 +/- 1.0 mu m). There was no significant difference between the groups for the %SMH (group light -63.9 +/- 13.9 and group regular -78.5 +/- 12.7). Conclusions: The data suggest that the light cola drink is less erosive than the regular one. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate whether the type of cola drink (regular or diet) could influence the wear of enamel subjected to erosion followed by brushing abrasion, Method and !Materials: Ten volunteers wore intraoral devices that each had eight bovine enamel blocks divided into four groups; ER, erosion with regular cola; EAR, erosion with regular cola plus abrasion; EL, erosion with light cola; and EAL, erosion with light cola plus abrasion, Each day for 1 week, half of each device was immersed in regular cola for 5 minutes, Then, two blocks were brushed using a fluoridated toothpaste and electric toothbrush for 30 seconds four times daily, Immediately after, the other half of the device was subjected to the same procedure using a light cola, The pH, calcium, phosphorus, and fluoride concentrations of the colas were analyzed using standard procedures, Enamel alterations were measured by profilometry. Data were tested using two-way ANOVA and Bonferroni test (P < .05), Results: Regarding chemical characteristics, light cola presented pH 3.0, 13.7 mg Ca/L, 15.5 mg P/L, and 0.31 mg F/L, while regular cola had pH 2.6, 32.1 mg Ca/L, 1:8.1 mg P/L, and 0.26 mg F/L, The light cola promoted less enamel loss (EL, 0.36 pm; EAL, 0.39 pm) than its regular counterpart (ER, 0.72 pm; EAR, 0.95 pm) for both conditions, There was not a significant difference (P > .05) between erosion and erosion plus abrasion for light cola, However, for regular cola, erosion plus abrasion resulted in higher enamel loss than erosion alone,.nclusion: The data suggest that light cola promoted less enamel wear even when erosion was followed by brushing abrasion, (Quintessence Int 2011;42:xxx-xx)()

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO(2)-Ta(2)O(5) chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (Con Cap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of carbon nanotubes in conjunction with a chemical or biological recognition element into a semiconductor field-effect device (FED) may lead to new (bio)chemical sensors. In this study, we present a new concept to develop field-effect-based sensors, using a light-addressable potentiometric sensor (LAPS) platform modified with layer-by-layer (LbL) films of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. Film growth was monitored for each layer adsorbed on the LAPS chip by Measuring current-voltage (IIV) curves. The morphology of the films was analyzed via atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), revealing the formation of a highly interconnected nanostructure of SWNTs-network into the dendrimer layers. Constant current (CC) Measurements showed that the incorporation of the PAMAM/SWNT LbL film containing LIP to 6 bilayers onto the LAPS Structure has a high pH sensitivity of ca. 58 mV/pH. The biosensing ability of the devices was tested for penicillin G via adsorptive immobilization of the enzyme penicillinase atop the LgL film. LAPS architectures modified with the LbL film exhibited higher sensitivity, ca. 100 mV/decade, in comparison to ca. 79 mV/decade for all unmodified LAPS, which demonstrates the potential application of the CNT-LbL Structure in field-effect-based (bio)chemical sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of Langmuir and Langmuir-Blodgett (LB) films from a block copolymer with polyethylene oxide and phenylene-vinylene moieties are reported. The LB films were successfully transferred onto several types of substrates, with sufficient quality to allow for evaporation of a metallic electrode on top of the LB films to produce polymer light emitting diodes (PLEDs). The photoluminescence and electroluminescence spectra of the LB film and device were similar, featuring an emission at ca. 475 nm, from which we could infer that the emission mechanisms are essentially the same as in poly(p-phenylene) derivatives. Analogously to other PLEDs the current versus voltage characteristics of the LB-based device could be explained with the Arkhipov model according to which charge transport occurs among localized sites. The implications for nanotechnology of the level of control that may be achieved with LB devices will also be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need of efficient (fast and low consumption) optoelectronic devices has always been the driving force behind the investigation of materials with new or improved properties. To be commercially attractive, however, these materials should be compatible with our current micro-electronics industry and/or telecommunications system. Silicon-based compounds, with their matured processing technology and natural abundance, partially comply with such requirements-as long as they emit light. Motivated by these issues, this work reports on the optical properties of amorphous Si films doped with Fe. The films were prepared by sputtering a Si+Fe target and were investigated by different spectroscopic techniques. According to the experimental results, both the Fe concentration and the thermal annealing of the samples induce changes in their atomic structure and optical-electronic properties. In fact, after thermal annealing at similar to 750 degrees C, the samples partially crystallize with the development of Si and/or beta-FeSi(2) crystallites. In such a case, certain samples present light emission at similar to 1500 nm that depends on the presence of beta-FeSi(2) crystallites and is very sensitive to the annealing conditions. The most likely reasons for the light emission (or absence of it) in the considered Fe-doped Si samples are presented and discussed in view of their main structural-electronic characteristics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the synthesis, photo luminescence and electroluminescence investigation of the novel tetrakis beta-diketonate of rare-earth complexes such as M[Eu(dbM)(4)] and M[Tb(acac)(4)] with a variety of cationic ligands, M=Li(+), Na(+) and K(+) have been investigated. The emission spectra of the Eu(3+) and Tb(3+) complexes displayed characteristic narrow bands arising from intraconfigurational transitions of trivalent rare-earth ions and exhibited red color emission for the Eu(3+) ion ((5)D(0) -> F(J), J=0-6) and green for the Tb(3+) ion ((5)D(4) -> (7)F(J), J = 6-0). The lack of the broaden emission bands arising from the ligands suggests the efficient intramolecular energy transfer from the dbm and acac ligands to Eu(3+) and Tb(3+) ions, respectively. In accordance to the expected, the values of PL quantum efficiency (eta) of the emitting (5)D(0) state of the tetrakis(beta-diketonate) complexes of Eu(3+) were higher compared with those tris-complexes. Therefore, organic electroluminescent (EL) devices were fabricated with the structure as follows: indium tin oxide (ITO)/hole transport layer (HTL) NPB or MTCD/emitter layer M[RE(beta-diketonate)(4)] complexes)/Aluminum (Al). All the films were deposited by thermal evaporation carried out in a high vacuum environment system. The OLED light emission was independent of driving voltage, indicating that the combination of charge carriers generates excitons within the M[RE(beta-diketonate)(4)] layers, and the energy is efficiently transferred to RE(3+) ion. As a best result, a pure red and green electroluminescent emission was observed from the Eu(3+) and Tb(3+) devices, confirmed by (X,Y) color coordinates. (C) 2008 Elsevier B.V. All rights reserved.