43 resultados para invariance
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector.
Resumo:
The possibility of having a gauge fixing term in the effective Lagrangian that is not a quadratic expression has been explored in spin-two theories so as to have a propagator that is both traceless and transverse. We first show how this same approach can be used in spontaneously broken gauge theories as an alternate to the 't Hooft gauge fixing which avoids terms quadratic in the scalar fields. This ""nonquadratic"" gauge fixing in the effective action results in two complex fermionic and one real bosonic ghost field. A global gauge invariance involving a fermionic gauge parameter, analogous to the usual Becchi-Rouet-Stora-Tyutin invariance, is present in this effective action.
Resumo:
A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by the effective field theory called the standard-model extension. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in the standard-model extension lie between 10(-4) and 10(-2) of the maximum expected, assuming a suppression of these signatures by a factor of 10(-17).
Resumo:
We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed; in particular, the motion in the constant magnetic field is studied in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3299296]
Resumo:
Twisted quantum field theories on the Groenewold-Moyal plane are known to be nonlocal. Despite this nonlocality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings between matter fields, or between matter fields and minimally coupled U(1) gauge fields are causal in this sense. On the other hand, interactions between matter fields and non-Abelian gauge fields violate this generalized causality. We derive the modified Feynman rules emergent from these features. They imply that interactions of matter with non-Abelian gauge fields are not Lorentz- and CPT-invariant.
Resumo:
In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this work we study the spontaneous breaking of superconformal and gauge invariances in the Abelian N = 1,2 three-dimensional supersymmetric Chern-Simons-matter (SCSM) theories in a large N flavor limit. We compute the Kahlerian effective superpotential at subleading order in 1/N and show that the Coleman-Weinberg mechanism is responsible for the dynamical generation of a mass scale in the N = 1 model. This effect appears due to two-loop diagrams that are logarithmic divergent. We also show that the Coleman-Weinberg mechanism fails when we lift from the N = 1 to the N = 2 SCSM model. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark beta algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples. Copyright (C) 2009 H. B. Coda and R. R. Paccola.
Resumo:
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of four phases, for this system: (i) classical nonpersistence, (ii) classical persistence, (iii) log-periodic nonpersistence, and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however, log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
Resumo:
We present precise tests of CP and CPT symmetry based on the full data set of K -> pi pi decays collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This data set contains 16 x 10(6) K -> pi(0)pi(0) and 69 x 10(6) K -> pi(+)pi(-) decays. We measure the direct CP violation parameter Re(epsilon'/epsilon) = (19.2 +/- 2.1) x 10(-4). We find the K(L) -> K(S) mass difference Delta m = (5270 +/- 12) x 10(6) (h) over tilde s(-1) and the K(S) lifetime tau(S) = (89.62 +/- 0.05) x 10(-12) s. We also measure several parameters that test CPT invariance. We find the difference between the phase of the indirect CP violation parameter epsilon and the superweak phase: phi(epsilon) - phi(SW) =(0.40 +/- 0.56)degrees. We measure the difference of the relative phases between the CP violating and CP conserving decay amplitudes for K -> pi(+)pi(-) (phi(+-)) and for K -> pi(0)pi(0) (phi(00)): Delta phi = (0.30 +/- 0.35)degrees. From these phase measurements, we place a limit on the mass difference between K(0) and (K) over bar (0): Delta M < 4.8 x 10(-19) GeV/c(2) at 95% C.L. These results are consistent with those of other experiments, our own earlier measurements, and CPT symmetry.
Resumo:
We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2, R) local symmetry and an SO(D, 2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D + 2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.
Resumo:
Using the superfield formalism, we study the dynamical breaking of gauge symmetry and super-conformal invariance in the N = 1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N = 2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.
Resumo:
In this work we present an analysis of the one-loop Slavnov-Taylor identities in noncommutative QED(4). The vectorial fermion-photon and the triple photon vertex functions were studied, with the conclusion that no anomalies arise.
Resumo:
This is a more detailed version of our recent paper where we proposed, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature. This can, in turn, be used to determine the finite temperature effective action for the system. As applications, we discuss the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as for the Schwinger model in detail. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. Various other aspects of the problem are also discussed in detail.