5 resultados para intrinsic and extrinsic interest

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a reply to Ortega-Baes` et al. (2010) survey of 25 Argentinean species of cacti evaluated for vivipary. We argue that the sample size and geographic area of the species investigated is insufficient to totally exclude the putative commonness of this condition in the Cactaceae. We indicate possible reasons why they did not find viviparous fruits in their survey. Failure to detect vivipary in cacti of NW Argentina may be correlated with limited taxonomic sampling and geographic region in addition to intrinsic and extrinsic plant factors, including different stages of fruit and seed development and genetic, ecological, and edaphic aspects, which, individually or in concert, control precocious germination. We uphold that viviparity is putatively frequent in this family and list 16 new cases for a total of 53 viviparous cacti, which make up ca. 4% incidence of viviparism in the Cactaceae, a substantially higher percentage than most angiosperm families exhibiting this condition. The Cactaceae ranks fourth in frequency of viviparity after the aquatic families of mangroves and seagrasses. We suggest the re-evaluation of cactus vivipary, primarily as a reproductive adaptation to changing environments and physiological stress with a secondary role as a reproductive strategy with limited offspring dispersal/survival and fitness advantages. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptospixosis, a spirochaetal zoonotic disease caused by Leptospira, has been recognized as an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospires, where it accounts for up to 75% of the total outer membrane proteins. It is highly immunogenic, and recent studies have implicated LipL32 as an extracellular matrix binding protein, interacting with collagens, fibronectin, and laminin. In order to better understand the biological role and the structural requirements for the function of this important lipoprotein, we have determined the 2.25-angstrom-resolution structure of recombinant LipL32 protein corresponding to residues 21-272 of the wild-type protein (LipL32(21-272)). The LipL32(21-272) monomer is made of a jelly-roll fold core from which several peripheral secondary structures protrude. LipL32(21-272) is structurally similar to several other jelly-roll proteins, some of which bind calcium ions and extracellular matrix proteins. Indeed, spectroscopic data (circular dichroism, intrinsic tryptophan fluorescence, and extrinsic 1-amino-2-naphthol-4-sulfonic acid fluorescence) confirmed the calcium-binding properties of LipL32(21-272). Ca(2+) binding resulted in a significant increase in the thermal stability of the protein, and binding was specific for Ca(2+) as no structural or stability perturbations were observed for Mg(2+), Zn(2+), or Cu(2+). Careful examination of the crystal lographic structure suggests the locations of putative regions that could mediate Ca(2+) binding as well as binding to other interacting host proteins, such as collagens, fibronectin, and lamixidn. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inside the `cavernous sinus` or `parasellar region` the human internal carotid artery takes the shape of a siphon that is twisted and torqued in three dimensions and surrounded by a network of veins. The parasellar section of the internal carotid artery is of broad biological and medical interest, as its peculiar shape is associated with temperature regulation in the brain and correlated with the occurrence of vascular pathologies. The present study aims to provide anatomical descriptions and objective mathematical characterizations of the shape of the parasellar section of the internal carotid artery in human infants and its modifications during ontogeny. Three-dimensional (3D) computer models of the parasellar section of the internal carotid artery of infants were generated with a state-of-the-art 3D reconstruction method and analysed using both traditional morphometric methods and novel mathematical algorithms. We show that four constant, demarcated bends can be described along the infant parasellar section of the internal carotid artery, and we provide measurements of their angles. We further provide calculations of the curvature and torsion energy, and the total complexity of the 3D skeleton of the parasellar section of the internal carotid artery, and compare the complexity of this in infants and adults. Finally, we examine the relationship between shape parameters of the parasellar section of the internal carotid artery in infants, and the occurrence of intima cushions, and evaluate the reliability of subjective angle measurements for characterizing the complexity of the parasellar section of the internal carotid artery in infants. The results can serve as objective reference data for comparative studies and for medical imaging diagnostics. They also form the basis for a new hypothesis that explains the mechanisms responsible for the ontogenetic transformation in the shape of the parasellar section of the internal carotid artery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give estimates of the intrinsic and the extrinsic curvature of manifolds that are isometrically immersed as cylindrically bounded submanifolds of warped products. We also address extensions of the results in the case of submanifolds of the total space of a Riemannian submersion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil`s scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the Sao Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.