86 resultados para in vivo-expressed genes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Cloning by nuclear transfer is often associated with poor results due to abnormal nuclear reprogramming of somatic donor cells and altered gene expression patterns. We investigated the expression patterns of imprinted genes IGF2 and IGF2R in 33- to 36-day bovine embryos and chorio-allantoic membranes derived from in vivo- and in vitro-produced embryos by somatic cell nuclear transfer (SCNT), parthenogenetic activation, and in vitro fertilization (IVF). There was a lower IGF2 expression rate in the SCNT (0.19) and parthenogenetic (0.02) groups when compared to in vivo and IVF embryos (2.01; P < 0.05). In the chorio-allantoic membranes, IGF2 showed a baseline expression pattern (P < 0.05) in parthenotes (0.001) when compared to in vivo, IVF (3.13), and SCNT (0.98) groups. IGF2R was less expressed (P < 0.05) in SCNT chorio-allantoic membranes (0.25) when compared to the in vivo group. The low expression of IGF2 in parthenogenetic embryos and chorio-allantoic membranes confirms its imprinted status in cattle. Alterations in the relative frequency of IGF2 and IGF2R transcripts were observed in SCNT-derived bovine embryos and chorioallantoic membranes, respectively, supporting the hypothesis that abnormalities in the expression of imprinted genes are causes of the low efficiency of SCNT procedures in this species.
Resumo:
To evaluate differential gene expression in penile tissue after treatment with the phosphodiesterase 5 (PDE5) inhibitor tadalafil, as of the three clinically available PDE5 inhibitors (sildenafil, tadalafil, and vardenafil) used for the treatment of erectile dysfunction (ED), tadalafil has a long half-life and low incidence of side-effects. In all, 32 adult rats were divided into two groups. The control group received 0.5 mL of drinking water alone, while the tadalafil group was treated with tadalafil at a dose of 0.27 mg/kg. At 4 h after treatment with water or tadalafil the rats were killed and the penile tissue was removed. The total RNA was isolated from the penile tissue from both groups and differentially expressed genes were identified by cDNA microarray analysis. To validate the expression data from the microarray analysis, quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry were used. In all, 153 genes were differentially expressed between the control group and the tadalafil group. We validated the microarray results by quantitative PCR for the insulin-like growth factor binding protein 6 (IGFBP-6) gene and the neuronal calcium sensor 1 (NCS-1) gene, both of which were up-regulated in the tadalafil group, and for the natriuretic peptide receptor 1 (NPR-1) gene that was down-regulated in this group. Immunohistochemistry showed localization of the NCS-1 protein in sinusoid trabeculae of the corpus cavernosum in control and tadalafil-treated rats. There was differential expression in 153 genes after tadalafil treatment. Some of these genes such as IGFBP-6, NPR-1 and NCS-1, might result in new targets in the treatment of ED.
Resumo:
Objective: To elucidate the potential mechanisms involved in the physiopathology of endometriosis. We analyzed the differential gene expression profiles of eutopic and ectopic tissues from women with endometriosis. Design: Prospective laboratory study. Setting: University hospital. Patient(s): Seventeen patients in whom endometriosis was diagnosed and 11 healthy fertile women. Intervention(s): Endometrial biopsy specimens from the endometrium of healthy women without endometriosis and from the eutopic and ectopic endometrium tissues of patients with endometriosis were obtained in the early proliferative phase of the menstrual cycle. Main Outcome Measure(s): Six paired samples of eutopic and ectopic tissue were analyzed by subtractive hybridization. To evaluate the expression of genes found by rapid subtraction hybridization methods, we measured CTGF, SPARC, MYC, MMP and IGFBP1 genes by real-time polymerase chain reaction in all samples. Result(s): This study identified 291 deregulated genes in the endometriotic lesions. Significant expression differences were obtained for SPARC, MYC, and IGFBP1 in the peritoneal lesions and for MMP3 in the ovarian endometriomas. Additionally, significant differences were obtained for SPARC and IGFBP1 between the peritoneal and ovarian lesions. No significant differences were found for the studied genes between the control and the eutopic endometrium. Conclusion(s): This study identified 291 genes with differential expression in endometriotic lesions. The deregulation of the SPARC, MYC, MMP3, and IGFBP1 genes may be responsible for the loss of cellular homeostasis in endometriotic lesions. (Fertil Steril(R) 2010;93:1750-73. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.
Resumo:
The Kallikrein-Kinin System (KKS) has been associated to inflammatory and immunogenic responses in the peripheral and central nervous system by the activation of two receptors, namely B1 receptor and B2 receptor. The B1 receptor is absent or under-expressed in physiological conditions, being up-regulated during tissue injury or in the presence of cytokines. The B2 receptor is constitutive and mediates most of the biological effects of kinins. Some authors suggest a link between the KKS and the neuroinflammation in Alzheimer`s disease (AD). We have recently described an increase in bradykinin (BK) in the cerebrospinal fluid and in densities of B1 and B2 receptors in brain areas related to memory, after chronic infusion of amyloid-beta (A beta) peptide in rats, which was accompanied by memory disruption and neuronal loss. Mice lacking B1 or B2 receptors presented reduced cognitive deficits related to the learning process, after acute intracerebroventricular (i.c.v). administration of A. Nevertheless, our group showed an early disruption of cognitive function by i.c.v. chronic infusion of A beta after a learned task, in the knock-out B2 mice. This suggests a neuroprotective role for B2 receptors. In knock-out B1 mice the memory disruption was absent, implying the participation of this receptor in neurodegenerative processes. The acute or chronic infusion of A beta can lead to different responses of the brain tissue. In this way, the proper involvement of KKS on neuroinflammation in AD probably depends on the amount of A beta injected. Though, BK applied to neurons can exert inflammatory effects, whereas in glial cells, BK can have a potential protective role for neurons, by inhibiting proinflammatory cytokines. This review discusses this duality concerning the KKS and neuroinflammation in AD in vivo.
Resumo:
Papaya (Carica papaya L) fruit has a short shelf life due to fast ripening induced by ethylene, but little is known about the genetic control of ripening and attributes of fruit quality. Therefore, we identified ripening-related genes affected by ethylene using cDNA-AFLP (Amplified Fragment Length Polymorphism of cDNA). Transcript profiling of non-induced and ethylene-induced fruit samples was performed, and 71 differentially expressed genes were identified. Among those genes some involved in ethylene biosynthesis, regulation of transcription, and stress responses or plant defence were found (heat shock proteins, polygalacturonase-inhibiting protein, and acyl-CoA oxidases). Several transcription factors were isolated, and except for a 14-3-3 protein, an AP2 domain-containing factor, a salt-tolerant zinc finger protein, and a suppressor of PhyA-105 1, most of them were negatively affected by ethylene, including fragments of transcripts similar to VRN1, and ethylene responsive factors (ERF). With respect to fruit quality, genes related to cell wall structure or metabolism, volatiles or pigment precursors, and vitamin biosynthesis were also found. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.
Resumo:
As the content of Transforming Growth Factor-beta (TGF beta) wanes in the milk of lactating rat, an increase in TGF beta is observed in the gastric epithelia concomitant with differentiation of the glands upon weaning. Whereas TGF beta has been shown to inhibit the proliferation of gastrointestinal cells in vitro, its functional significance and mechanisms of action have not been studied in vivo. Therefore, we administered TGF beta 1 (1 ng/g body wt.) to 14-day-old rats in which the gastric epithelium was induced to proliferate by fasting, and determined the involvement of signaling through Smads and the impact on epithelial cell proliferation and apoptosis. After the gavage, we observed the progressive increase of active TGF beta 1 while T beta RII-receptor remained constant in the gastric mucosa. By immunohistochemistry, we showed Smad2/3 increase at 60 min (p < 0.05) and Smad2 phosphorylation/activation and translocation to the nucleus most prominently between 0 and 30 min after treatment (p < 0.05). Importantly, TGF beta 1 inhibited cell proliferation (p < 0.05), which was estimated by BrDU pulse-labeling 12 h after gavage. Lower proliferation was reflected by increased p27(kip1) at 2 h (p < 0.05). Also, TGF beta 1 increased apoptosis as measured by M30 labeling at 60 and 180 min (p < 0.001), and by morphological features at 12 h (p < 0.05). In addition, we observed higher levels of activated caspase 3 (17 kDa) from 0 to 30 min. Altogether, these data indicate a direct effect of TGF beta 1 signaling through Smads on both inhibiting proliferation, through alteration of cycle proteins, and inducing apoptosis of gastric epithelial cells in vivo. Further, the studies suggest a potential role for both milk and tissue-expressed TG beta 1 in gastric growth during postnatal development, (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50 ppm HQ (1 h/day for 5 days). One hour later, oxidative burst, cell cycle. DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1 h later the last exposures, inflammation was induced by LPS inhalation (0.1 mg/ml/10 min) and 3 h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of beta(2) and beta(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ exposure, which may be considered in host defense in infectious diseases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of this investigation was to monitor metronidazole concentrations in the gingival crevicular fluid (GCF) collected from periodontal pockets of dogs after treatment with an experimental 15% metronidazole gel. Five dogs had periodontitis induced by cotton ligatures placed subgingivally and maintained for a 30-day period. After the induction period, only pockets with 4 mm or deeper received the gel. Each pocket was filled up to the gingival margin by means of a syringe with a blunt-end needle. GCF was collected in paper strips and quantified in an electronic device before and after 15 minutes, 1 h, 6 h, 24 h and 48 h of gel administration. The GCF samples were assayed for metronidazole content by means of a high performance liquid chromatography method. Concentrations of metronidazole in the GCF of the 5 dogs (mean ± SD, in µg/mL) were 0 ± 0 before gel application and 47,185.75 ± 24,874.35 after 15 minutes, 26,457.34 ± 25,516.91 after 1 h, 24.18 ± 23.11 after 6 h, 3.78 ± 3.45 after 24 h and 3.34 ± 5.54 after 48 h. A single administration of the 15% metronidazole gel released the drug in the GCF of dogs in levels several-fold higher than the minimum inhibitory concentration for some periodontopathogens grown in subgingival biofilms for up to one hour, but metronidazole could be detected in the GCF at least 48 hours after the gel application.
Resumo:
Tamarindus indica has been used in folk medicine as an antidiabetic, a digestive aid, and a carminative, among other uses. Currently, there is no information in the toxicology literature concerning the safety of T. indica extract. We evaluated the clastogenic and/or genotoxic potential of fruit pulp extract of this plant in vivo in peripheral blood and liver cells of Wistar rats, using the comet assay, and in bone marrow cells of Swiss mice, using the micronucleus test. The extract was administered by gavage at doses of 1000, 1500 and 2000 mg/kg body weight. Peripheral blood and liver cells from Wistar rats were collected 24 h after treatment, for the comet assay. The micronucleus test was carried out in bone marrow cells from Swiss mice collected 24 h after treatment. The extract made with T. indica was devoid of clastogenic and genotoxic activities in the cells of the rodents, when administered orally at these three acute doses.
Resumo:
Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G(1) phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.
Resumo:
Background: Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI). There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo. Methodology/Principal Findings: In order to test Loxosceles gaucho venom (LV) nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control). LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats. Conclusions/Significance: Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite.
Resumo:
In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups.
Resumo:
Objective: This study investigated and correlated the kinetic expression of vascular endothelial growth factor (VEGF)-A(165) messenger ribonucleic acid (mRNA) with the associated use or not of an infrared laser and a visible red laser during the wound healing in rats. Background Data: There is a lack of scientific evidence demonstrating the influence of low-level laser therapy (LLLT) on the expression of VEGF mRNA in vivo. Materials and Methods: Forty-five Wistar rats were randomly allocated to one of three groups: I (n = 5, nonoperated animals), II (n = 25, operated animals), and III (n = 25, animals operated and subjected to laser irradiation). A surgical wound was performed using a scalpel in the right side of the tongue of operated animals. In group III, two sessions of laser irradiation were performed, one right after the surgical procedure (infrared laser, 780 nm, 70mW, 35 J/cm(2)) and the other 48 h later (visible red laser, 660 nm, 40mW, 5J/cm(2)). Five animals each were sacrificed 1, 3, 5, and 7 days postoperatively in groups II and III, and samples of tongue tissue were obtained. The animals of group I were sacrificed on day 7. Total RNA was extracted using guanidine-isothiocyanate-phenol-chloroform method. The results of horizontal electrophoresis after reverse transcription polymerase chain reaction permitted the ratio of VEGF-A(165) mRNA and glyceraldehyde 3-phosphate dehydrogenase mRNA expression for groups I, II, and III to be assessed (two-way analysis of variance and Tukey test, p<0.05). Results: The expression of VEGF-A(165) mRNA in group II (0.770 +/- 0.098) was statistically greater than that observed in groups I (0.523 +/- 0.164) and III (0.504 +/- 0.069) in the first day after surgery (p<0.05). Significant differences between the groups were not observed in other time periods. Conclusion: LLLT influenced the expression of VEGF-A(165) mRNA during wound healing after a surgical procedure on the tongue of Wistar rats.