191 resultados para humic acid
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present study evaluates the possibility of eliminating the purification steps involved in the characterization of HA by capillary zone electrophoresis (CZE). The HAs of various sources were analyzed, showing different electropherograms by CZE, which depend on the charge and size of HA. The data suggest that the purification of the sample is not necessary to characterize HAs. Based on the results, CZE showed to be a promising tool to characterize HA of different origins without the purification step of the sample.
Resumo:
Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.
Resumo:
The effect of sewage sludge (SS) amendment on the general properties of the top layers of a sandy and a clayey oxisols and on the nature of their humic acid (HA) fractions was evaluated by chemical and physico-chemical techniques. The amended soils, especially the sandy soil, benefited of SS amendment by increasing their pH to above neutrality and enhancing the contents of C, N, P, and Ca and cation exchange capacity. The SS-HA-like sample showed larger H and N contents and a greater aliphatic character and humification degree than the HAs isolated from non-amerided soils. The composition and structure of amended soil HAs were affected by SS application as a function of soil type and layer. In particular, N-containing groups and aliphatic structures of SS-HA-like sample appears to be partially incorporated in the amended soil HAs, and these effects were more evident in the HAs from the sandy oxisol. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The polyelectrolyte complex (PEC) resulting from the reaction of sodium carboxymethylcellulose (CMC) and N,N,N-trimethylchitosan hydrochloride (TMQ) was prepared and then characterized by infrared spectroscopy and energy dispersive X rays analysis. The interactions involving the PEC and Cu2+ ions, humic acid and atrazine in aqueous medium were studied. From the adsorption isotherms the maximum amount adsorbed (Xmax) was determined as 61 mg Cu2+/g PEC, 171 mg humic acid/g PEC and 5 mg atrazine/g PEC. The results show that the CMC/TMQ complex has a high affinity for the studied species, indicating its potential application to remove them from aqueous media.
Resumo:
O lodo de esgoto doméstico é um resíduo gerado durante os processos de tratamento de esgoto, podendo ser estabilizado por diversos processos químicos, físicos e biológicos. O lodo de esgoto estabilizado (biossólido) não possui um destino final adequado e gera diversos problemas no sentido de sua disposição final. Dentre os muitos processos que visam à disposição do biossólido, destaca-se a reciclagem agrícola. A utilização da vermicompostagem como meio de estabilização do lodo de esgoto mostra-se como uma ferramenta útil na estabilização deste resíduo. O processo de vermicompostagem apresentou características físico-químicas satisfatórias para ser utilizado como técnica de estabilização do lodo de esgoto doméstico. O produto final apresentou potencial para ser utilizado na agricultura como fertilizante ou condicionador de solos.
Resumo:
The photodegradation of the herbicide clomazone in the presence of S(2)O(8)(2-) or of humic substances of different origin was investigated. A value of (9.4 +/- 0.4) x 10(8) m(-1) s(-1) was measured for the bimolecular rate constant for the reaction of sulfate radicals with clomazone in flash-photolysis experiments. Steady state photolysis of peroxydisulfate, leading to the formation of the sulfate radicals, in the presence of clomazone was shown to be an efficient photodegradation method of the herbicide. This is a relevant result regarding the in situ chemical oxidation procedures involving peroxydisulfate as the oxidant. The main reaction products are 2-chlorobenzylalcohol and 2-chlorobenzaldehyde. The degradation kinetics of clomazone was also studied under steady state conditions induced by photolysis of Aldrich humic acid or a vermicompost extract (VCE). The results indicate that singlet oxygen is the main species responsible for clomazone degradation. The quantum yield of O(2)(a(1)Delta(g)) generation (lambda = 400 nm) for the VCE in D(2)O, Phi(Delta) = (1.3 +/- 0.1) x 10(-3), was determined by measuring the O(2)(a(1)Delta(g)) phosphorescence at 1270 nm. The value of the overall quenching constant of O(2)(a(1)Delta(g)) by clomazone was found to be (5.7 +/- 0.3) x 10(7) m(-1) s(-1) in D(2)O. The bimolecular rate constant for the reaction of clomazone with singlet oxygen was k(r) = (5.4 +/- 0.1) x 10(7) m(-1) s(-1), which means that the quenching process is mainly reactive.
Resumo:
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The interaction between poly(o-ethoxyaniline) (POEA) adsorbed onto solid substrates and humic substances (HS) and Cu(2+) ions has been investigated using UV-vis spectroscopy and atomic force microscopy (AFM). Both HS and Cu(2+) are able to dope POEA and change film morphology. This interaction was exploited in a sensor array made with nanostructured films of POEA, sulfonated lignin and HS, which could detect small concentrations of HS and Cu(2+) in water. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
The variation in the Ca:Mg ratio in amendments used to neutralize soil acidity is one way of altering the availability of those nutrients to the plants in acid soils. The objective of the work was to evaluate the effect of different proportions of calcium and magnesium in the form of CaCO(3) and MgCO(3) Oil the nutrient uptake, and initial production of dry matter by corn plants. The study was carried out in greenhouse conditions, in Lages, SC, with a completely randomized experimental design, with three replications. The treatments were the application of equivalent to 21.0 t ha(-1) of lime, using mixtures of CaCO(3) and MgCO(3) in several proportions to obtain different Ca:Mg ratios (1: 1, 2:1, 4:1, 8:1, 16:1 and 32:1), on a Humic Alic Cambisol, with 310 g kg(-1) of clay. The application of treatments caused the following Ca:Mg ratios in the CEC: 1. 1: 1, 2.1:1, 4.0:1, 8.1:1, 16.4:1 and 31.8:1. The high concentrations of exchangeable Ca in soil caused by addition of lime with high Ca content inhibited the uptake of Mg and K by the corn plants. The increase in the soil Ca:Mg ratio reduced the dry matter production and height of plants in the initial stage of development.
Resumo:
This study evaluated the influence of a cola-type soft drink and a soy-based orange juice on the surface and subsurface erosion of primary enamel, as a function of the exposure time. Seventy-five primary incisors were divided for microhardness test (n=45) or scanning electron microscopy (SEM) analysis (n=30). The specimens were randomly assigned to 3 groups: 1 - artificial saliva (control); 2 - cola-type soft drink; and 3 - soy-based orange juice. Immersion cycles in the beverages were undertaken under agitation for 5 min, 3 times a day, during 60 days. Surface microhardness was measured at 7, 15, 30, 45 and 60 days. After 60 days, specimens were bisected and subsurface microhardness was measured at 30, 60, 90, 120, 150 and 200 µm from the surface exposed. Data were analyzed by ANOVA and Tukey’s test (a=0.05). Groups 2 and 3 presented similar decrease of surface microhardness. Regarding subsurface microhardness, group 2 presented the lowest values. SEM images revealed that after 60 days the surfaces clearly exhibited structural loss, unlike those immersed in artificial saliva. It may be concluded that erosion of the surfaces exposed to the cola-type soft drink was more accentuated and directly proportional to the exposure time.
Resumo:
Because a greater research effort has been directed to analyzing the adhesive effectiveness of self etch primers to dentin, the aim of this study was to evaluate, by microtensile testing, the bond strength to enamel of a composite resin combined with a conventional adhesive system or with a self-etching primer adhesive, used according to its original prescription or used with previous acid etching. Thirty bovine teeth were divided into 3 groups with 10 teeth each (n= 10). In one of the groups, a self-etching primer (Clearfil SE Bond - Kuraray) was applied in accordance with the manufacturer's instructions and, in the other, it was applied after previous acid etching. In the third group, a conventional adhesive system (Scotchbond Multipurpose Plus - 3M-ESPE) was applied in accordance with the manufacturer's instructions. The results obtained by analysis of variance revealed significant differences between the adhesive systems (F = 22.31). The self-etching primer (Clearfil SE Bond) presented lower enamel bond strength values than the conventional adhesive system (Scotchbond Multipurpose Plus) (m = 39.70 ± 7.07 MPa) both when used according to the original prescription (m = 27.81 ± 2.64 MPa) and with previous acid etching (m = 25.08 ± 4.92 MPa).
Resumo:
The γ-aminobutyric acid (Gaba) is a non-protein amino acid found in prokaryotes and eukaryotes. Its role in plant development has not been fully established. This study reports a quantification of the levels of endogenous Gaba, as well as investigation of its role in different stages of somatic embryogenesis in Acca sellowiana Berg. (Myrtaceae). Zygotic embryos were used as explants and they were inoculated into the culture medium contained different concentrations of Gaba (0,2, 4, 6, 8 and 10 µM). The highest concentrations of endogenous Gaba were detected between the third and nine days after inoculation, reaching the value of 12.77 µmol.g-1FW. High frequency of somatic embryogenesis was observed in response to 10 µM Gaba. This treatment also resulted in a large number of normal embryos, and the lowest percentage of formation of fused somatic embryos, phenotypic characteristic of most deformed embryos in all treatments. Also, all treatments promoted the formation of the somatic embryos with positive characteristics of development resumption, which however did not originate the seedlings.