39 resultados para hot spot - menetelmä
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The biological cause of Pork Stress syndrome, which leads to PSE (pale, soft, exudative) meat, is excessive release of Ca(2+) ions, which is promoted by a genetic mutation in the ryanodine receptors (RyR) located in the sarcoplasmic reticulum of the skeletal muscle cells. We examined the relationship between the formation of PSE meat under halothane treatment and heat stress exposure in chicken alpha RYR hot spot fragments. Four test groups were compared: 1) birds slaughtered without any treatment, i.e., the control group (C); 2) birds slaughtered immediately after halothane treatment (H); 3) birds slaughtered immediately after heat stress treatment (HS), and 4) birds exposed to halothane and to heat stress (H+HS), before slaughtering. Breast muscle mRNA was extracted, amplified by RT-PCR, and sequenced. PSE meat was evaluated using color determination (L*value). The most common alteration was deletion of a single nucleotide, which generated a premature stop codon, resulting in the production of truncated proteins. The highest incidence of nonsense transcripts came with exposure to halothane; 80% of these abnormal transcripts were detected in H and H+HS groups. As a consequence, the incidence of abnormal meat was highest in the H+HS group (66%). In HS, H, and C groups, PSE meat developed in 60, 50, and 33% of the samples, respectively. Thus, halothane apparently modulates alpha RYR gene expression in this region, and synergically with exposure to heat stress, causes Avian Stress syndrome, resulting in PSE meat in broiler chickens.
Resumo:
Background: Lymph node metastasis in endometrial cancer significantly decreases survival rate. Few data on the influence of intratumoral lymphatic microvessel density (LMVD) on survival in endometrial cancer are available. Our aim was to assess the intratumoral LMVD of endometrial carcinomas and to investigate its association with classical pathological factors, lymph node metastasis and survival. Methods: Fifty-seven patients with endometrial carcinoma diagnosed between 2000 and 2008 underwent complete surgical staging and evaluation of intratumoral LMVD and other histologic variables. Lymphatic microvessels were identified by immunohistochemical staining using monoclonal antibody against human podoplanin (clone D2-40) and evaluated by counting the number of immunostained lymphatic vessels in 10 hot spot areas at 400x magnification. The LMVD was expressed by the mean number of vessels in these 10 hot spot microscopic fields. We next investigated the association of LMVD with the clinicopathologic findings and prognosis. Results: The mean number of lymphatic vessels counted in all cases ranged between 0 and 4.7. The median value of mean LMVD was 0.5, and defined the cut-off for low and high LMVD. We identified low intratumoral LMVD in 27 (47.4%) patients and high LMVD in 30 (52.6%) patients. High intratumoral LMVD was associated with lesser miometrial and adnaexal infiltration, lesser cervical and peritoneal involvement, and fewer fatal cases. Although there was lower lymph node involvement among cases with high LMVD, the difference did not reach significance. No association was seen between LMVD and FIGO staging, histological type, or vascular invasion. On the other hand, low intratumoral LMVD was associated with poor outcome. Seventy-five percent of deaths occurred in patients with low intratumoral LMVD. Conclusion: Our results show association of high intratumoral LMVD with features related to more localized disease and better outcome. We discuss the role of lymphangiogenesis as an early event in the endometrial carcinogenesis.
Resumo:
Paracoccidioides brasiliensis infections have been little studied in wild and/or domestic animals, which may represent an important indicator of the presence of the pathogen in nature. Road-killed wild animals have been used for surveillance of vectors of zoonotic pathogens and may offer new opportunities for eco-epidemiological studies of paracoccidiodomycosis (PCM). The presence of P. brasiliensis infection was evaluated by Nested-PCR in tissue samples collected from 19 road-killed animals; 3 Cavia aperea (guinea pig), 5 Cerdocyon thous (crab-eating-fox), 1 Dasypus novemcinctus (nine-banded armadillo), 1 Dasypus septemcinctus (seven-banded armadillo), 2 Didelphis albiventris (white-eared opossum), 1 Eira barbara (tayra), 2 Gallictis vittata (grison), 2 Procyon cancrivorus (raccoon) and 2 Sphiggurus spinosus (porcupine). Specific P. brasiliensis amplicons were detected in (a) several organs of the two armadillos and one guinea pig, (b) the lung and liver of the porcupine, and (c) the lungs of raccoons and grisons. P. brasiliensis infection in wild animals from endemic areas might be more common than initially postulated. Molecular techniques can be used for detecting new hosts and mapping `hot spot` areas of PCM.
Resumo:
Gemcitabine is a chemotherapy agent that may cause unpredictable side effects. In this report, we describe a fatal gemcitabine-induced pulmonary toxicity in a patient with gallbladder metastatic adenocarcinoma. A 72-year-old patient was submitted to an elective laparoscopic cholecystectomy, and a tubular adenocarcinoma in the gallbladder was incidentally diagnosed. CT scan and ultrasound before the surgery did not show any tumor. After the surgery a Pet scan was positive for a hot-spot in the left colon. The colonic lesion was conveniently removed and the histology evaluation confirmed the diagnosis of adenocarcinoma tubular. The patient was then submitted to three sections of 1,600 mg/m(2) of gemcitabine with intervals of 1 week. Three weeks later he developed severe respiratory distress. A helicoidal CT scan showed diffuse and severe interstitial pneumonitis, and lung biopsy confirmed accelerated usual interstitial pneumonia consistent with drug-induced toxicity. The patient presented unfavorable evolution with progressive worsening of respiratory function, hypotension, and renal failure. He died 1 month later in spite of methylprednisolone pulse therapy, large spectrum antimicrobial therapy, and full support of respiratory, hemodynamic and renal systems. Gemcitabine-induced pulmonary toxicity is usually a dramatic condition. Physicians should suspect pulmonary toxicity in patients with respiratory distress after gemcitabine chemotherapy, mainly in elderly patients.
Resumo:
Mutations of the mitofusin 2 (MFN2) gene have been reported to be the most common cause of the axonal form of Charcot Marie Tooth disease (CMT). The aim of this study was to describe a de novo MFN2 p.R104W mutation and characterize the associated phenotype. We screened the entire coding region of MFN2 gene and characterized its clinical phenotype, nerve conduction studies and sural nerve biopsy. Neuropsychological tests and brain MRI were also performed. A de nova mutation was found in exon 4 (c.310C > T; p.R104W). In addition to a severe and early onset axonal neuropathy, the patient presented learning problems, obesity, glucose intolerance, leukoencephalopathy, brain atrophy and evidence of myelin involvement and mitochondrial structural changes on sural nerve biopsy. These results suggest that MFN2 p.R104W mutation is as a hot-spot for MFN2 gene associated to a large and complex range of phenotypes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Time-dependent fluctuations in surface-enhanced Raman scattering (SERS) intensities were recorded from a roughened silver electrode immersed in diluted solutions of rhodamine 6G (R6G) and congo red (CR). These fluctuations were attributed to a small number of SERS-active molecules probing regions of extremely high electromagnetic field (hot spots) at the nanostructured surface. The time-dependent distribution of SERS intensities followed a tailed statistics at certain applied potentials, which has been linked to single-molecule dynamics. The shape of the distribution was reversibly tuned by the applied voltage. Mixtures of both dyes, R6G and CR, at low concentrations were also investigated. Since R6G is a cationic dye and CR is an anionic dye, the statistics of the SERS intensity distribution of either dye in a mixture were independently controlled by adjusting the applied potential. The potential-controlled distribution of SERS intensities was interpreted by considering the modulation of the surface coverage of the adsorbed dye by the interfacial electric field. This interpretation was supported by a two-dimensional Monte Carlo simulation that took into account the time evolution of the surface configuration of the adsorbed species and their probability to populate a hypothetical hot spot. The potential-controlled SERS dynamics reported here is a first step toward the spectroelectrochemical investigation of redox processes at the single-molecule level by SERS.
Resumo:
The objective of this work was to evaluate biaxial-flexural-strength (σf), Vickers hardness (HV), fracture toughness (K Ic), Young's modulus (E), Poisson's ratio (ν) and porosity (P) of two commercial glass-ceramics, Empress (E1) and Empress 2 (E2), as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.
Resumo:
The objective is to differentiate noncavitated caries enamel through time-resolved fluorescence and to find excitation and emission parameters that can be applied in future clinical practice for detection of caries lesions that are not clearly visible to the professional. Sixteen human teeth with noncavitiated white-spot caries were selected for this work. Fluorescence intensity decay was measured by using an apparatus based on the time-correlated single-photon counting method. An optical fiber bundle was employed for sample excitation (440 nm), and the fluorescence collected by the same bundle (500 nm) was registered. The average lifetime for sound enamel was 7: 93 +/- 0: 09, 2: 46 +/- 0: 04, and 0: 51 +/- 0: 02 ns, whereas for the carious enamel the lifetimes were 4: 84 +/- 0: 06, 1: 35 +/- 0: 02, and 0: 16 +/- 0: 01 ns. It was concluded that it is possible to differentiate between carious and sound regions by time-resolved fluorescence and that, although the origin of enamel fluorescence is still uncertain, the lifetime values seem to be typical of fluorophores like collagen I. (C) 2010 Optical Society of America
Resumo:
In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of 7.6 +/- 0.6 Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known higher mass exoplanet orbits with a shorter period.
Resumo:
We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass M(p) = 3.47 +/- 0.38 M(Jup), a radius R(p) = 1.31 +/- 0.18 R(Jup), and a density rho(p) = 2.2 +/- 0.8 g cm(-3). It orbits a G9V star with a mass M(*) = 0.95 +/- 0.15 M(circle dot), a radius R(*) = 1.00 +/- 0.13 R(circle dot), and a rotation period P(rot) = 5.4 +/- 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the RossiterMcLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity psi = 20 degrees +/- 20 degrees +/- (sky-projected value lambda = -10 degrees +/- 20 degrees), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm(-3). It orbits a G0V star with T(eff) = 5 945 K, M(*) = 1.09 M(circle dot), R(*) = 1.01 R(circle dot), solar metallicity, a lithium content of +1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 M(circle plus).
Resumo:
Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer**. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 R(J), a mass of 0.22 +/- 0.03 M(J), and therefore a mean density of 1.6 +/- 0.1 g cm(-3). Conclusions. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm(-3)). We estimate its content in heavy elements to be 47-63 M(circle plus), and the mass of its hydrogen-helium envelope to be 7-23 M(circle plus). At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than similar to 0.1% over an assumed integrated lifetime of 3 Ga.
Resumo:
The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a ""hot Jupiter"" planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high (7)Li abundance. While the light curve indicates a much higher level of activity than, e. g., the Sun, there is no sign of activity spectroscopically in e. g., the [Ca II] H&K lines.