9 resultados para hierarchies

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Security administrators face the challenge of designing, deploying and maintaining a variety of configuration files related to security systems, especially in large-scale networks. These files have heterogeneous syntaxes and follow differing semantic concepts. Nevertheless, they are interdependent due to security services having to cooperate and their configuration to be consistent with each other, so that global security policies are completely and correctly enforced. To tackle this problem, our approach supports a comfortable definition of an abstract high-level security policy and provides an automated derivation of the desired configuration files. It is an extension of policy-based management and policy hierarchies, combining model-based management (MBM) with system modularization. MBM employs an object-oriented model of the managed system to obtain the details needed for automated policy refinement. The modularization into abstract subsystems (ASs) segment the system-and the model-into units which more closely encapsulate related system components and provide focused abstract views. As a result, scalability is achieved and even comprehensive IT systems can be modelled in a unified manner. The associated tool MoBaSeC (Model-Based-Service-Configuration) supports interactive graphical modelling, automated model analysis and policy refinement with the derivation of configuration files. We describe the MBM and AS approaches, outline the tool functions and exemplify their applications and results obtained. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Policy hierarchies and automated policy refinement are powerful approaches to simplify administration of security services in complex network environments. A crucial issue for the practical use of these approaches is to ensure the validity of the policy hierarchy, i.e. since the policy sets for the lower levels are automatically derived from the abstract policies (defined by the modeller), we must be sure that the derived policies uphold the high-level ones. This paper builds upon previous work on Model-based Management, particularly on the Diagram of Abstract Subsystems approach, and goes further to propose a formal validation approach for the policy hierarchies yielded by the automated policy refinement process. We establish general validation conditions for a multi-layered policy model, i.e. necessary and sufficient conditions that a policy hierarchy must satisfy so that the lower-level policy sets are valid refinements of the higher-level policies according to the criteria of consistency and completeness. Relying upon the validation conditions and upon axioms about the model representativeness, two theorems are proved to ensure compliance between the resulting system behaviour and the abstract policies that are modelled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiral expansions of the two-pion exchange components of both two- and three-nucleon forces are reviewed and a discussion is made of the predicted pattern of hierarchies. The strength of the scalar-isoscalar central potential is found to be too large and to defy expectations from the symmetry. The causes of this effect can be understood by studying the nucleon scalar form factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct static soliton solutions with non-zero Hopf topological charges to a theory which is an extension of the Skyrme-Faddeev model by the addition of a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled non-linear partial differential equations in two variables by a successive over-relaxation (SOR) method. We construct numerical solutions with Hopf charge up to four, and calculate their analytical behavior in some limiting cases. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms. Their energies and sizes tend to zero as that combination approaches a particular special value. We calculate the equivalent of the Vakulenko and Kapitanskii energy bound for the theory and find that it vanishes at that same special value of the coupling constants. In addition, the model presents an integrable sector with an in finite number of local conserved currents which apparently are not related to symmetries of the action. In the intersection of those two special sectors the theory possesses exact vortex solutions (static and time dependent) which were constructed in a previous paper by one of the authors. It is believed that such model describes some aspects of the low energy limit of the pure SU(2) Yang-Mills theory, and our results may be important in identifying important structures in that strong coupling regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the deformed sine-Gordon models recently presented by Bazeia et al [1] to take the first steps towards defining the concept of quasi-integrability. We consider one such definition and use it to calculate an infinite number of quasi-conserved quantities through a modification of the usual techniques of integrable field theories. Performing an expansion around the sine-Gordon theory we are able to evaluate the charges and the anomalies of their conservation laws in a perturbative power series in a small parameter which describes the ""closeness"" to the integrable sine-Gordon model. We show that in the case of the two-soliton scattering the charges, up to first order of perturbation, are conserved asymptotically, i.e. their values are the same in the distant past and future, when the solitons are well separated. We indicate that this property may hold or not to higher orders depending on the behavior of the two-soliton solution under a special parity transformation. For closely bound systems, such as breather-like field configurations, the situation however is more complex and perhaps the anomalies have a different structure implying that the concept of quasi-integrability does not apply in the same way as in the scattering of solitons. We back up our results with the data of many numerical simulations which also demonstrate the existence of long lived breather-like and wobble-like states in these models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.