7 resultados para global heading changes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Carbon emissions related to human activities have been significantly contributing to the elevation of atmospheric [CO(2)] and temperature. More recently, carbon emissions have greatly accelerated, thus much stronger effects on crops are expected. Here, we revise literature data concerning the physiological effects of CO(2) enrichment and temperature rise on crop species. We discuss the main advantages and limitations of the most used CO(2)-enrichment technologies, the Open-Top Chambers (OTCs) and the Free-Air Carbon Enrichment (FACE). Within the conditions expected for the next few years, the physiological responses of crops suggest that they will grow faster, with slight changes in development, such as flowering and fruiting, depending on the species. There is growing evidence suggesting that C(3) crops are likely to produce more harvestable products and that both C(3) and C(4) crops are likely to use less water with rising atmospheric [CO(2)] in the absence of stressful conditions. However, the beneficial direct impact of elevated [CO(2)] on crop yield can be offset by other effects of climate change, such as elevated temperatures and altered patterns of precipitation. Changes in food quality in a warmer, high-CO(2) world are to be expected, e.g., decreased protein and mineral nutrient concentrations, as well as altered lipid composition. We point out that studies related to changes in crop yield and food quality as a consequence of global climatic changes should be priority areas for further studies, particularly because they will be increasingly associated with food security. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study examines the variability of the South America monsoon system (SAMS) over tropical South America (SA). The onset, end, and total rainfall during the summer monsoon are investigated using precipitation pentad estimates from the global precipitation climatology project (GPCP) 1979-2006. Likewise, the variability of SAMS characteristics is examined in ten Intergovernmental Panel on Climate Change (IPCC) global coupled climate models in the twentieth century (1981-2000) and in a future scenario of global change (A1B) (2081-2100). It is shown that most IPCC models misrepresent the intertropical convergence zone and therefore do not capture the actual annual cycle of precipitation over the Amazon and northwest SA. Most models can correctly represent the spatiotemporal variability of the annual cycle of precipitation in central and eastern Brazil such as the correct phase of dry and wet seasons, onset dates, duration of rainy season and total accumulated precipitation during the summer monsoon for the twentieth century runs. Nevertheless, poor representation of the total monsoonal precipitation over the Amazon and northeast Brazil is observed in a large majority of the models. Overall, MI-ROC3.2-hires, MIROC3.2-medres and MRI-CGCM3.2.3 show the most realistic representation of SAMS`s characteristics such as onset, duration, total monsoonal precipitation, and its interannual variability. On the other hand, ECHAM5, GFDL-CM2.0 and GFDL-CM2.1 have the least realistic representation of the same characteristics. For the A1B scenario the most coherent feature observed in the IPCC models is a reduction in precipitation over central-eastern Brazil during the summer monsoon, comparatively with the present climate. The IPCC models do not indicate statistically significant changes in SAMS onset and demise dates for the same scenario.
Resumo:
Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA-dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation.
Resumo:
The long-term Colonia record is located in the Atlantic rainforest domain in Brazil (23 degrees 52`S 46 degrees 42`20 `` W 900 m a.s.l.). The 780 cm long core CO3 provides a coverage of a complete interglacial/glacial cycle for the first time in a neotropical rainforest. Information on the behavior of tropical climates compared to global changes in temperatures indicates specific climate responses in terms of precipitation at these latitudes. Winter extratropical circulation was very active during the last interglacial and most of the glacial. Floristic composition of the rainforest changed several times in each phase of expansion, twice during the interglacial, and three times during glacial episodes. Araucaria was well developed in the area of Sao Paulo until the beginning of the first dry phase of the glacial at ca. 50,000 yr B.P. Changes in insolation controlled the expansion of the rainforest and the tropical hydrological cycle as evidenced by a strong precession signal. However precession had no impact on regional climatic features. The two interglacials (MIS 5e and Holocene) showed completely different patterns attesting to the continuous evolution of the forest. The biodiversity index (Shannon-Wiener Index) remained high during both the interglacial and glacial attesting to the permanence of small patches of rainforest refugia during drier phases. The lowest Shannon-Wiener Indexes were recorded between 23,000 and 12,000 yr B.P. and 40,000 and 30,000 yr B.P. and characterize two marked phases of stress for the rainforest. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Middle to Late Holocene barriers are conspicuous landforms in southeastern and southern Brazilian regions. The barriers in the coastal zones of northern Santa Catarina, Parana and Sao Paulo states (27 degrees 19`-24 degrees 00`S) are formed mainly by beach ridge alignments and many barriers present foredune and blowout alignments in their seaward portion. The development of these eolian landforms appears to record a regional shift in coastal dynamics and barrier building. In this context, the Ilha Comprida barrier stands out for its well-developed and well-preserved foredunes and blowouts. Based on the presence or not and type of eolian landforms, the Ilha Comprida barrier can be divided seaward into inner, middle and outer units. The inner unit is formed entirely by beach ridges. The middle unit comprises a narrow belt of blowouts (up to 15 m high) aligned alongshore. Blowout lobes pointing NNW are indicative of their generation by southern winds. The outer unit is represented by low (<= 1 m high) active or stabilized foredunes and a small transgressive dunefield (similar to 1 km(2)). Twenty-seven luminescence ages (SAR protocol) obtained for the beach ridges, foredunes, and blowouts of these three units allow definition of a precise chronology of these landforms and calculation of rates of coastal progradation. The inner unit presents ages greater than 1004 +/- 88 years. The blowouts of the middle unit show ages from 575 +/- 47 to 172 +/- 18 years. The ages of the outer unit are less than 108 +/- 10 years. Rates of coastal progradation for the inner and outer units are 0.71-0.82 m/year and 0.86-2.23 m/year, respectively. The main phase of blowout development correlates well with the Little Ice Age (LIA) climatic event. These results indicate that southern winds in subtropical Brazil became increasingly more intense and/or frequent during the LIA. These conditions persist to the present and are responsible for the development of the eolian landforms in the outer unit. Thus, barrier geomorphology can record global climatic events. The sensitivity of barrier systems in subtropical Brazil to Late Holocene climate changes was favored by the relative sea level stillstand during this time. Luminescence dating makes it possible to analyze barrier geomorphology during Late Holocene climate changes operating on timescales of a hundred to thousand years. These results improve our knowledge of barrier building and will help in the evaluation of the impact of future climate changes on coastal settings. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class. During germination, the zoospore, a motile nongrowing cell, goes through a cascade of morphological changes that culminates with its differentiation into the germling cell, capable of coenocytic vegetative growth. Transcriptome analyses of B. emersonii cells were carried out during germination induced under various environmental conditions. Microarray data analyzing 3,563 distinct B. emersonii genes revealed that 26% of them are differentially expressed during germination in nutrient medium at at least one of the time points investigated. Over 500 genes are upregulated during the time course of germination under those conditions, most being related to cell growth, including genes involved in protein biosynthesis, DNA transcription, energetic metabolism, carbohydrate and oligopeptide transport, and cell cycle control. On the other hand, several transcripts stored in the zoospores are downregulated during germination in nutrient medium, such as genes involved in signal transduction, amino acid transport, and chromosome organization. In addition, germination induced in the presence of nutrients was compared with that triggered either by adenine or potassium ions in inorganic salt solution. Several genes involved in cell growth, induced during germination in nutrient medium, do not show increased expression when B. emersonii zoospores germinate in inorganic solution, suggesting that nutrients exert a positive effect on gene transcription. The transcriptome data also revealed that most genes involved in cell signaling show the same expression pattern irrespective of the initial germination stimulus.
Resumo:
The Blastocladiella emersonii life cycle presents a number of drastic biochemical and morphological changes, mainly during two cell differentiation stages: germination and sporulation. To investigate the transcriptional changes taking place during the sporulation phase, which culminates with the production of the zoospores, motile cells responsible for the dispersal of the fungus, microarray experiments were performed. Among the 3,773 distinct genes investigated, a total of 1,207 were classified as differentially expressed, relative to time zero of sporulation, at at least one of the time points analyzed. These results indicate that accurate transcriptional control takes place during sporulation, as well as indicating the necessity for distinct molecular functions throughout this differentiation process. The main functional categories overrepresented among upregulated genes were those involving the microtubule, the cytoskeleton, signal transduction involving Ca(2+), and chromosome organization. On the other hand, protein biosynthesis, central carbon metabolism, and protein degradation were the most represented functional categories among downregulated genes. Gene expression changes were also analyzed in cells sporulating in the presence of subinhibitory concentrations of glucose or tryptophan. Data obtained revealed overexpression of microtubule and cytoskeleton transcripts in the presence of glucose, probably causing the shape and motility problems observed in the zoospores produced under this condition. In contrast, the presence of tryptophan during sporulation led to upregulation of genes involved in oxidative stress, proteolysis, and protein folding. These results indicate that distinct physiological pathways are involved in the inhibition of sporulation due to these two classes of nutrient sources.