10 resultados para formation stability

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Pineapple pulp was homogenised at different pressures, and its stability investigated by way of flow curves, particle size distribution, morphology, cloudiness and sedimentation. The particle size of the homogenised pulp ranged from 400 to 100 mu m for homogenisation pressures of between 0 and 700 bar. The pineapple pulp showed shear thinning behaviour with increasing flow index (n) after processing at higher pressures. In addition, the pulps with smaller particles showed less serum cloudiness, even though the sedimentation tests showed the highest stability for pulp homogenised between 200 and 300 bar. Above 400 bar, the pulp showed phase separation and higher sedimentation indexes, similar to that observed for the untreated samples, which was attributed to the formation of aggregates because of interparticle attraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen`s secondary structure is affected by all three studied surfactants (decrease in alpha-helix and an increase in beta-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possible ways for glycine oligopeptide formation in gas phase, both in the extended P-strand like conformation and folded 2(7)-ribbon like conformations are analyzed using quantum chemical calculations. We focus on the sequential formation of peptide bond through upgradation of the immediate lower order molecule and observe the consequences in other related processes like oligoglycine formation through simultaneous peptide linkage of n glycine monomers and interchange of molecular conformation through peptide linkage. A comparison is made between the structures and binding energies obtained for both conformers. All binding energies are increased by the zero-point energy contribution. The role of electron correlation effects is briefly analyzed. The folded 2(7)-ribbon-like conformations in vacuo are found to be more stable in comparison to the extended structure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present ab initio calculations of the formation energies and stability of different types of multi-vacancies in carbon nanotubes. We demonstrate that, as in the case of graphene, the reconstruction of the defects has drastic effects on the energetics of the tubes. In particular, the formation of pentagons eliminates the dangling bonds thus lowering the formation energy. This competition leads to vacancies having an even number of carbon atoms removed to be more stable. Finally the appearance of magic numbers indicating more stable defects can be represented by a model for the formation energies that is based on the number of dangling bonds of the unreconstructed system, the pentagons and the relaxation of the final form of the defect formed after the relaxation. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dinuclear ruthenium(II) complex double-bridged by an N-aromatic ligand 2-mercaptopyridine (2-pyridinethiol or 2-pyridyl mercaptan) and a methyl sulfoxide (dmso) have been characterized by X-ray crystallography. The reported compound with formula [Ru(2)Cl(3) (mu-pyS)(mu-dmso)(dmso)(4)] center dot 2H(2)O, [C(15)H(36)Cl(3)NO(7)S(6)Ru(2)] (P2/c, a = 13.8175(2) angstrom, b = 10.5608(2) angstrom, c = 21.3544 (3) angstrom, beta = 106.090(1)degrees, V = 2,994.05(8) angstrom(3), Z = 4) represents a seven-membered ring system with both rutheniums in an octahedral geometry. All the hydrogen bonds (C-H-Cl) and the van der Waals contacts give rise to three-dimensional network in the structure and add stability to the dinuclear compound. To our knowledge, this is the first time that the formation of a dinuclear ruthenium(II) complex double-bridged by an N-aromatic ligand 2-mercaptopyridine and dmso have been reported. The study also provided valuable insight into bioinorganic chemistry as continuing efforts are being made to develop metal-based cancer chemotherapeutics. A major feature of this paper is the resolution of a double bridged ruthenium structure which contributes to a better understanding of ruthenium reactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The septins are a family of conserved proteins involved in cytokinesis and cortical organization. An increasing amount of data implicates different septins in diverse pathological conditions including neurodegenerative disorders, neoplasia and infections. Human SEPT4 is a member of this family and its tissue-specific ectopic expression profile in colorectal and urologic cancer makes it a useful diagnostic biomarker. Thermal unfolding of the GTPase domain of SEPT4 (SEPT4-G) revealed an unfolding intermediate which rapidly aggregates into amyloid-like fibers under physiological conditions. In this study, we examined the effects of protein concentration, pH and metals ions on the aggregation process of recombinant SEPT4-G using a series of biophysical techniques, which were also employed to study chemical unfolding and stability. Divalent metal ions caused significant acceleration to the rate of SEPT4-G aggregation. Urea induced unfolding was shown to proceed via the formation of a partially unfolded intermediate state which unfolds further at higher urea concentrations. The intermediate is a compact dimer which is unable to bind GTR At 1 M urea concentration, the intermediate state was plagued by irreversible aggregation at temperatures above 30 degrees C. However, higher urea concentration resulted in a marked decay of the aggregation, indicating that the partially folded structures may be necessary for the formation of these aggregates. The results presented here are consistent with the recently determined crystal structure of human septins and shed light on the aggregation properties of SEPT4 pertinent to its involvement in neurodegenerative disease. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and thermodynamic stabilities of monomers and dimers of trialkylphosphine oxides (TRPO) were Studied using quantum chemistry calculations. Density functional theory calculations were carried Out and the structures Of four TRPO have been determined: TMPO (methyl; R = CH(3)), TEPO (ethyl; R = CH(3)CH(2)), TBPO (n-butyl; R = CH(3)(CH(2))(3)), and TOPO (n-octyl; R = CH(3)(CH(2))(7)). TRPO homodimers were investigated considering two isomeric possibilities for each dimer. Relative binding energies and the enthalpic and entropic contributions to the Gibbs free energy were Calculated for all dimers. The formation of dimers from the individual monomeric TRPO species as a function of temperature was also analyzed. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 109: 250-258, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the impact of hydroxyl groups on the properties of C(60)(OH)(n) systems, with n = 1, 2, 3, 4, 8, 10, 16, 18, 24, 32 and 36 by means of first-principles density functional theory calculations. A detailed analysis from the local density of states has shown that adsorbed OH groups can induce dangling bonds in specific carbon atoms around the adsorption site. This increases the tendency to form polyhydroxylated fullerenes (fullerenols). The structural stability is analyzed in terms of the calculated formation enthalpy of each species. Also, a careful examination of the electron density of states for different fullerenols shows the possibility of synthesizing single molecules with tunable optical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of hydrolysis of 1,8-N-butyl-naphthalimide (1,8-NBN) to 1,8-N-butyl-naphthalamide (1,8-NBAmide) and of 2,3-N-butyl-naphthalimide (2,3-NBN) to 2,3-N-butyl-naphthalamide (2,3-NBAmide), as well as the formation of the respective anhydrides from the amides were investigated in a wide acidity range. 1,8-NBN equilibrates with 1,8-NBAmide in mild alkali. Under the same conditions 2,3-NBN quantitatively yields 2,3-NBAmide. Over a wide range of acidities the reactions of the 1,8- and 2,3-N-butyl-naphthalamides (or imides) yield similar products but with widely different rates and at distinct pH`s. Anhydride formation in acid was demonstrated for 1,8-NBAmide. The reactions mechanisms were rationalized in the manifold pathways of ab initio calculations. The differences in rates and pH ranges in the reactions of the 1,8- and 2,3-N-butyl-naphthalamides were attributed to differences in the stability of the tetrahedral intermediates in alkali as well as the relative stabilities of the five and six-membered ring intermediates. The rate of carboxylic acid assisted 1,8-N-Butyl-naphthalamide hydrolysis is one of the largest described for amide hydrolysis models. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. It was recently found that the isoflavone genistein (GEN) potently inhibits TTR amyloid fibril formation (Green et al., 2005) and is therefore a promising candidate for TTR amyloidosis treatment. Here we used structural and biophysical approaches to characterize genistein binding to the wild type (TTRwt) and to its most frequent amyloidogenic variant, the V30M mutant. In a dose-dependent manner, genistein elicited considerable increases in both mutant and TTRwt stability as demonstrated by high hydrostatic pressure (HHP) and acid-mediated dissociation/denaturation assays. TTR:GEN crystal complexes and isothermal titration calorimetry (ITC) experiments showed that the binding mechanisms of genistein to the TTRwt and to V30M are different and are dependent on apoTTR structure conformations. Furthermore, we could also identify potential allosteric movements caused by genistein binding to the wild type TTR that explains, at least in part, the frequently observed negatively cooperative process between the two sites of TTRwt when binding ligands. These findings show that TTR mutants may present different ligand recognition and therefore are of value in ligand design for inhibiting TTR amyloidosis. (C) 2010 Elsevier Inc. All rights reserved.