74 resultados para fluorophosphate glass
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Vitreous samples containing high concentrations of WO3 (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO3. These amorphous thin films of about 4 mu m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO3 microcrystals in the amorphous phase. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to evaluate the clinical performance of glass ionomer cement (GIC) restorations comparing two minimally invasive methods in permanent teeth after 12 months. Fifty pregnant women (second trimester of pregnancy), mean age 22 ± 5.30 years, were treated by two previously trained operators. The treatment approaches tested were: chemomechanical method (CarisolvTM; MediTeam) and atraumatic restorative treatment (ART). A split-mouth study design was used in which the two treatments were randomly placed in 50 matched pairs of permanent teeth. The chemomechanical method (CM) was the test group and the ART was the control group. The treatments were performed in Public Health Centers. The tested restorative material was a high-strength GIC (Ketac Molar; 3M/ESPE). The restorations were placed according to the ART guidelines. Two calibrated independent examiners evaluated the restorations in accordance with ART criteria. The inter-examiner kappa was 0.97. Data were analyzed using 95% confidence interval on the binomial distribution and Fisher's exact test at 5% significance level. In a 12-month follow-up, 86% of the restorations were evaluated. In the test group (CM), 100% (CI=93.3-100%) of the restorations were considered successful. In the control group (ART) 97.6% (CI=87.4-99.9%) of the restorations were considered successful and 2.4% unsuccessful (marginal defect >0.5 mm). There was no statistically significant difference between the 12-mounth success rate for both groups (Fisher's exact test: P=0.49) and between the two operators (Fisher's exact test: P=1.00). Both minimally invasive methods, chemomechanical method and ART, showed a similar clinical performance after 12 months of follow up.
Resumo:
The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.
Resumo:
In long-term oral rehabilitation treatments, resistance of provisional crowns is a very important factor, especially in cases of an extensive edentulous distal space. The aim of this laboratorial study was to evaluate an acrylic resin cantilever-type prosthesis regarding the flexural strength of its in-balance portion as a function of its extension variation and reinforcement by two types of fibers (glass and polyaramid), considering that literature is not conclusive on this subject. Each specimen was composed by 3 total crowns at its mesial portion, each one attached to an implant component (abutment), while the distal portion (cantilever) had two crowns. Each specimen was constructed by injecting acrylic resin into a two-part silicone matrix placed on a metallic base. In each specimen, the crowns were fabricated with either acrylic resin (control group) or acrylic resin reinforced by glass (Fibrante, Angelus) or polyaramide (Kevlar 49, Du Pont) fibers. Compression load was applied on the cantilever, in a point located 7, 14 or 21 mm from the distal surface of the nearest crown with abutment, to simulate different extensions. The specimen was fixed on the metallic base and the force was applied until fracture in a universal test machine. Each one of the 9 sub-groups was composed by 10 specimens. Flexural strength means (in kgf) for the distances of 7, 14 and 21 mm were, respectively, 28.07, 8.27 and 6.39 for control group, 31.89, 9.18 and 5.16 for Kevlar 49 and 30.90, 9.31 and 6.86 for Fibrante. Data analysis ANOVA showed statistically significant difference (p<0.05) only regarding cantilever extension. Tukey's test detected significantly higher flexural strength for the 7 mm-distance, followed by 14 and 21 mm. Fracture was complete only on specimens of non-reinforced groups.
Resumo:
This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers’ instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.
Resumo:
This study evaluated the fracture resistance of weakened roots restored with glass fiber posts, composite resin cores and complete metal crowns. Thirty maxillary canines were randomly divided into 3 groups of 10 teeth each: teeth without weakened roots (control); teeth with partially weakened roots (PWR) and teeth with and largely weakened roots (LWR). The control group was restored with glass fiber posts and a composite resin core. Teeth in the PWR and LWR groups were flared internally to standardized dimensions in order to simulate root weakness. Thereafter, the roots were partially filled with composite resin and restored in the same way as in the control group. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis of the tooth until failure. Data were analyzed by one-way ANOVA and Dunnett's test for multiple comparisons (p=0.05). There were statistically significant difference differences (p<0.01) among the groups (control group = 566.73 N; PWR = 409.64 N; and LWR = 410.91 N), with significantly higher fracture strength for the control group. There was no statistically significant difference (p>0.05) between the weakened groups. The results of this study showed that thicker root dentin walls significantly increase the fracture resistance of endodontically treated teeth.
Resumo:
This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.
Resumo:
Dentin hypersensitivity (DH) is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate) in occluding open dentinal tubules. A dentin disc model was employed to observe comparatively, using scanning electron microscopy (SEM), dentinal tubule occlusion by different products and deposition of hydroxyl carbonate apatite (HCA) on dentin surface by Biosilicate, after a single application: G1 - Dentifrice with potassium nitrate and fluoride; G2 - Two-step calcium phosphate precipitation treatment; G3 - Water-free gel containing Biosilicate particles (1%); G4 - Biosilicate particles mixed with distilled water in a 1:10 ratio; all of them after 1, 12 and 24 hours of immersion in artificial saliva. Fourier transform infrared spectroscopy (FTIR) was performed to detect HCA formation on dentin discs filled with Biosilicate after 2 minutes, 30 minutes and 12 hours of immersion in artificial saliva. SEM showed a layer of HCA formed on dentin surface after 24 hours by G4. G1, G2 and G3 promoted not total occlusion of open dentinal tubules after 24 hours. FTIR showed HCA precipitation on the dentin surface induced by Biosilicate after 30 minutes. The micron-sized particles from the bioactive glass-ceramic thus were able to induce HCA deposition in open dentinal tubules in vitro. This finding suggests that Biosilicate may provide a new option for treating DH.
Resumo:
The aims of this study were to demonstrate the synthesis of an experimental glass ionomer cement (GIC) by the non-hydrolytic sol-gel method and to evaluate its biocompatibility in comparison to a conventional glass ionomer cement (Vidrion R). Four polyethylene tubes containing the tested cements were implanted in the dorsal region of 15 rats, as follows: GI - experimental GIC and GII - conventional GIC. The external tube walls was considered the control group (CG). The rats were sacrificed 7, 21 and 42 days after implant placement for histopathological analysis. A four-point (I-IV) scoring system was used to graduate the inflammatory reaction. Regarding the experimental GIC sintherization, thermogravimetric and x-ray diffraction analysis demonstrated vitreous material formation at 110oC by the sol-gel method. For biocompatibility test, results showed a moderate chronic inflammatory reaction for GI (III), severe for GII (IV) and mild for CG (II) at 7 days. After 21 days, GI presented a mild reaction (II); GII, moderate (III) and CG, mild (II). At 42 days, GI showed a mild/absent inflammatory reaction (II to I), similar to GII (II to I). CG presented absence of chronic inflammatory reaction (I). It was concluded that the experimental GIC presented mild/absent tissue reaction after 42 days, being biocompatible when tested in the connective tissue of rats.
Resumo:
OBJECTIVE: This study evaluated the effect of ferrule preparation (Fp) on the fracture resistance of endodontically treated teeth, restored with composite resin cores with or without glass fiber posts. MATERIAL AND METHODS: Forty-four bovine teeth were sectioned 19 or 17 mm (2 mm ferrule) from the apex, endodontically treated and assigned to four groups (n = 11): Group 1: Fp and post; Group 2: Fp and without post; Group 3: without Fp and with post; Group 4: without Fp and without post. All specimens were restored with composite resin core and metal crown. Specimens were subjected to fracture resistance testing in a universal testing machine at a crosshead speed of 0.5 mm/min. The data were analyzed by two-way ANOVA and Tukey's tests (α=0.05). RESULTS: The mean fracture resistance values were as follows: Group 1: 573.3 N; Group 2: 552.5 N; Group 3: 275.3 N; Group 4: 258.6 N. Significantly higher fracture resistance was found for the groups with Fp (p<0.001). CONCLUSION: There was no statistically significant interaction between the "Fp" and "post" factors (p = 0.954). The ferrule preparation increased the fracture resistance of endodontically treated teeth. However, the use of glass fiber post showed no significant influence on the fracture resistance.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.
Resumo:
The objective of this work was to evaluate biaxial-flexural-strength (σf), Vickers hardness (HV), fracture toughness (K Ic), Young's modulus (E), Poisson's ratio (ν) and porosity (P) of two commercial glass-ceramics, Empress (E1) and Empress 2 (E2), as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.
Resumo:
The aim of this study was to assess the Knoop hardness of three high viscous glass ionomer cements: G1 - Ketac Molar; G2 - Ketac Molar Easymix (3M ESPE) and G3 - Magic Glass ART (Vigodent). As a parallel goal, three different methods for insertion of Ketac Molar Easymix were tested: G4 - conventional spatula; G5 - commercial syringe (Centrix) and G6 - low-cost syringe. Ten specimens of each group were prepared and the Knoop hardness was determined 5 times on each specimen with a HM-124 hardness machine (25 g/30 s dwell time) after 24 h, 1 and 2 weeks. During the entire test period, the specimens were stored in liquid paraffin at 37ºC. Significant differences were found between G3 and G1/G2 (two-way ANOVA and Tukey's post hoc test; p<0.01). There was no significant difference in the results among the multiple ways of insertion. The glass ionomer cement Magic Glass ART showed the lowest hardness, while the insertion technique had no significant influence on hardness.
Resumo:
A new criterion has been recently proposed combining the topological instability (lambda criterion) and the average electronegativity difference (Delta e) among the elements of an alloy to predict and select new glass-forming compositions. In the present work, this criterion (lambda.Delta e) is applied to the Al-Ni-La and Al-Ni-Gd ternary systems and its predictability is validated using literature data for both systems and additionally, using own experimental data for the Al-La-Ni system. The compositions with a high lambda.Delta e value found in each ternary system exhibit a very good correlation with the glass-forming ability of different alloys as indicated by their supercooled liquid regions (Delta T(x)) and their critical casting thicknesses. In the case of the Al-La-Ni system, the alloy with the largest lambda.Delta e value, La(56)Al(26.5)Ni(17.5), exhibits the highest glass-forming ability verified for this system. Therefore, the combined lambda.Delta e criterion is a simple and efficient tool to select new glass-forming compositions in Al-Ni-RE systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563099]
Resumo:
We report on energy transfer studies in terbium (Tb(3+))-europium (Eu(3+)) doped TeO(2)-ZnO-Na(2)O-PbO glass containing silver nanostructures. The samples excitation was made using ultraviolet radiation at 355 nm. Luminescence spectra were recorded from approximate to 480 to approximate to 700 nm. Enhanced Eu(3+) luminescence at approximate to 590 nm (transition (5)D(0)-(7)F(1)) and approximate to 614 nm (transition (5)D(0)-(7)F(2)) are observed. The large luminescence enhancement was obtained due to the simultaneous contribution of the Tb(3+)-Eu(3+) energy transfer and the contribution of the intensified local field on the Eu(3+) ions located near silver nanostructures.