87 resultados para fatty esters
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the present work, a group contribution method is proposed for the estimation of viscosity of fatty compounds and biodiesel esters as a function of the temperature. The databank used for regression of the group contribution parameters (1070 values for 65 types of substances) included fatty compounds, such as fatty acids, methyl and ethyl esters and alcohols, tri- and diacylglycerols, and glycerol. The inclusion of new experimental data for fatty esters, a partial acylglycerol, and glycerol allowed for a further refinement in the performance of this methodology in comparison to a prior group contribution equation (Ceriani, R.; Goncalves, C. B.; Rabelo, J.; Caruso, M.; Cunha, A. C. C.; Cavaleri, F. W.; Batista, E. A. C.; Meirelles, A. J. A. Group contribution model for predicting viscosity of fatty compounds. J. Chem. Eng. Data 2007, 52, 965-972) for all classes of fatty compounds. Besides, the influence of small concentrations of partial acylglycerols, intermediate compounds in the transesterification reaction, in the viscosity of biodiesels was also investigated.
Resumo:
An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) mu g L-1, whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
To determine the effects of saturated and unsaturated fatty acids in phosphatidylcholine (PC) on macrophage activity, peritoneal lavage cells were cultured in the presence of phosphatidylcholine rich in saturated or unsaturated fatty acids (sat PC and unsat PC, respectively), both used at concentrations of 32 and 64 µM. The treatment of peritoneal macrophages with 64 µM unsat PC increased the production of hydrogen peroxide by 48.3% compared to control (148.3 ± 16.3 vs 100.0 ± 1.8%, N = 15), and both doses of unsat PC increased adhesion capacity by nearly 50%. Moreover, 64 µM unsat PC decreased neutral red uptake by lysosomes by 32.5% compared to the untreated group (67.5 ± 6.8 vs 100.0 ± 5.5%, N = 15), while both 32 and 64 µM unsat PC decreased the production of lipopolysaccharide-elicited nitric oxide by 30.4% (13.5 ± 2.6 vs 19.4 ± 2.5 µM) and 46.4% (10.4 ± 3.1 vs 19.4 ± 2.5 µM), respectively. Unsat PC did not affect anion production in non-stimulated cells or phagocytosis of unopsonized zymosan particles. A different result pattern was obtained for macrophages treated with sat PC. Phorbol 12-miristate 13-acetate-elicited superoxide production and neutral red uptake were decreased by nearly 25% by 32 and 64 µM sat PC, respectively. Sat PC did not affect nitric oxide or hydrogen peroxide production, adhesion capacity or zymosan phagocytosis. Thus, PC modifies macrophage activity, but this effect depends on cell activation state, fatty acid saturation and esterification to PC molecule and PC concentration. Taken together, these results indicate that the fatty acid moiety of PC modulates macrophage activity and, consequently, is likely to affect immune system regulation in vivo.
Resumo:
A series of nine new [3-(disubstituted-phosphate)-4,4,4-trifluoro-butyl]-carbamic acid ethyl esters (phosphate-carbamate compounds) was obtained through the reaction of (4,4,4-trifluoro-3-hydroxybut-1-yl)-carbamic acid ethyl esters with phosphorus oxychloride followed by the addition of alcohols. The products were characterized by ¹H, 13C, 31P, and 19F NMR spectroscopy, GC-MS, and elemental analysis. All the synthesized compounds were screened for acetylcholinesterase (AChE) inhibitory activity using the Ellman method. All compounds containing phosphate and carbamate pharmacophores in their structures showed enzyme inhibition, being the compound bearing the diethoxy phosphate group (2b) the most active compound. Molecular modeling studies were performed to investigate the detailed interactions between AChE active site and small-molecule inhibitor candidates, providing valuable structural insights into AChE inhibition.
Resumo:
OBJECTIVE: To analyze the monounsaturated and polyunsaturated trans fatty acid intake among the general population. METHODS: A cross-sectional study was conducted in São Paulo, Southeastern Brazil, in 2003, on a representative sample of 2,298 male and female subjects, including 803 adolescents (12 to 19 years), 713 adults (20 to 59 years) and 782 elderly people (60 years or over). Food intake was measured using 24-hour recall. Mean trans fatty acid intake was described according to gender and age group. RESULTS: The mean trans fatty acid intake was 5.0 g/day (SE = 0.1), accounting for 2.4% (SE = 0.1) of total energy and 6.8% (SE = 0.1) of total lipids. The adolescents had the highest mean intake levels (7.4 g/day; 2.9% of energy) while the adults and the elderly had similar intake (2.2% of energy for both; 6.4% of lipids and 6.5% of lipids, respectively). The mean trans fatty acid intake among adult and elderly women (approximately 2.5% of energy and 7.0% of lipids) was higher than among men in the same age group. The food item with the highest contribution towards trans fatty acids was margarine, accounting for more than 30% of total intake, followed by filled cookies among adolescents and meat among adults and the elderly. CONCLUSIONS: The trans fatty acid intake is above the level recommended by the World Health Organization. Replacement of the trans fatty acids in manufactured food items may be an effective measure for reducing trans fatty acid intake in Brazil.
Resumo:
The diet and plasma lipid patterns associated with lipid oxidation susceptibility in rats fed different doses of polyunsaturated fatty acids (n-3 PUFA) from fish oil were evaluated. Wistar rats were assigned into three groups and received diets containing 8% soybean oil (SOY), 4% soybean oil + 4% fish oil (SOY-FISH) and 8% fish oil (FISH) for 21 days. Linoleic, oleic and ?-linolenic acids in SOY diets were substituted by myristic, palmitic, palmitoleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in SOY-FISH and FISH diets reducing the n-6/n-3 ratio and increasing the peroxidability index (PI). Increased dietary EPA and DHA were observed in SOY-FISH and FISH plasma at the expense of linoleic and arachidonic acid levels. Saturated fatty acids, which were significantly different between the three diets (P < 0.01), were found at the same concentration in the plasma (P = 0.23). No changes were observed in oxidative stress as measured by the concentration of thiobarbituric acid reactive substances (TBARS) expressed in brain homogenates. However, TBARS concentration in the plasma of the SOY-FISH group was higher than the other two groups (P = 0.02). The major differences between these three groups were the n-3 PUFA content (0.4, 1.8 and 3.2 g/100 g diet) and the saturates/polyunsaturates ratio (0.3, 0.5 and 0.8) for SOY, SOY-FISH, and FISH groups, respectively. Thus, n-3 PUFA intake from fish oil only when followed by a decrease in saturated/polyunsaturated fatty acids ratio increased oxidative susceptibility in rats measured by plasma TBARS concentration
Resumo:
A gordura vegetal parcialmente hidrogenada tem sido utilizada na aromatização de snacks. Entretanto, o risco à saúde ocasionado pelo elevado consumo de ácidos graxos saturados e trans (AGT) vem estimulando o desenvolvimento de abordagens alternativas a essa gordura. Substituímos a gordura vegetal parcialmente hidrogenada (F) por óleo de canola (O) na aromatização de snacks. Snacks com diferentes níveis de O foram produzidos, embalados e armazenados em temperatura ambiente durante vinte semanas. Monitoramos o perfil de ácidos graxos, o teor de substâncias reativas ao TBA (TBARS), a força de cisalhamento e a aceitabilidade sensorial. A substituição total reduziu o teor de ácidos graxos saturados em 72,5 por cento, em comparação aos snacks comerciais. Os snacks eram inicialmente isentos de AGT, porém, após 8 semanas, esses compostos surgiram, havendo aumento gradual durante o período de armazenamento. Entretanto, estes níveis mantiveram-se inferiores aos observados em snacks comercializados. Também foram observados baixos teores de TBARS e estabilidade da força de cisalhamento. Snacks aromatizados com F ou O foram igualmente bem aceitos durante as vinte semanas de armazenamento. É possível desenvolver snacks com teores reduzidos de ácidos graxos saturados e trans, estáveis durante o armazenamento, mantendo a elevada aceitabilidade sensorial típica deste tipo de produto
Resumo:
Oil and fat as energy sources at low cost are relevant in ruminant nutrition. The aim of this study was to evaluate the effects of palm fatty acid distillate (PFAD) on the degradability and ciliate protozoa population in buffalo. Four rumen fistulated buffaloes were fed a basal diet in a Latin square (4x4) design trial. Treatments were designed with four of different levels of PFAD added directly into the rumen: 0; 200; 420 and 500 g/animal/d. High levels of PFAD (420 and 500 g/d) promoted higher degradation of the soluble fraction and lower in potentially degradable fraction of dry matter (DM) and neutral detergent fibre (NDF) with lower values of potential and effective degradability in two evaluated grasses, bermudagrass and brachiariagrass. Significant decreases in the total number of protozoa/mL of rumen content, Entodinium and ciliates belonging to subfamily Diplodiniinae were observed at higher level of PFDA addition in the rumen. Also, Epidinium and Holotrich ciliates disappeared from the rumen. Significant correlations were observed of the ciliate concentration and composition as a function of dietary lipids content. Entodinium composition increased from 68.0% to 99.6% and Diplodiniinae reduced from 30.4% to 0.4% with increasing PFAD level indicating higher fat toxicity effect on the Diplodiniinae ciliates than Entodinium species and direct action of the larger ciliates on the fibre degradation.
Resumo:
Methyl esters were prepared by the clean, one-step catalytic esterification of primary alcohols using molecular oxygen as a green oxidant and a newly developed SiO(2)-supported gold nanoparticle catalyst. The catalyst was highly active and selective in a broad range of pressure and temperature. At 3 atm O(2) and 130 degrees C benzyl alcohol was converted to methyl benzoate with 100% conversion and 100% selectivity in 4 h of reaction. This catalytic process is much ""greener"" than the conventional reaction routes because it avoids the use of stoichiometric environmentally unfriendly oxidants, usually required for alcohol oxidation, and the use of strong acids or excess of reactants or constant removal of products required to shift the equilibrium to the desired esterification product.
Resumo:
The use of the fish silage as an ingredient in feed for aquatic organisms is an alternative to solve sanitary and environmental problems caused by the lack of an adequate destination for the residues generated by the fishing industry. It would also lower the costs with feed, and consequently the fish production costs, since the expenses with the feed account for approximately 60% of the total cost. The objective of this study was to evaluate the fatty acid composition of the acid silage (AS), biological silage (BS) and enzymatic silage (ES) produced from discardings of the culture and from processing residues of the Nile tilapia (Oreochromis niloticus). The values found for lipids (dry matter basis) were: 12.45; 12.25 and 12.17 g 100 g(-1) for BS, AS, and ES, respectively. The fatty acids present in the lipid fraction of the silages are predominantly unsaturated. Oleic acid was present in larger amounts (30.49, 28.60 and 30.60 g 100 g(-1) of lipids for BS, AS and ES, respectively). Among saturated fatty acids, palmitic and stearic acids were present in larger amounts. Only traces of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids were found. The silages produced from discardings of the culture and processing residues of the Nile tilapia are not a good source of EPA and DHA for fish feeds.
Resumo:
Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested ENS reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16 degrees Brix with a sucrose solution, and batch fermentations were performed at 22 degrees C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Y(p/s)), biomass (Y(x/s)), glycerol (Y(g/s)) and acetic acid (Y(ac/s)), the volumetric productivity of ethanol (Q(p)), the biomass productivity (P(x)), and the fermentation efficiency (E(f)) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the E(f), Y(p/s), Y(g/s), and Y(x/s) parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 mu g/L), CAT-1 (80,317.01 mu g/L), VR-1 (67,573.99 mu g/L) and S. bayanus CBS 1505 (71,660.32 mu g/L). The highest concentrations of ethyl esters were 454.33 mu g/L, 440.33 mu g/L and 438 mu g/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 mu g/L) and higher alcohols (83,996.33 mu g/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. (C) 2010 Elsevier B.V. All rights reserved.