26 resultados para electrospray ionization mass spectrometry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH(3)OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V(ESI), +4.50 W), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r > 0.99). LODs in the range of 16-172 mu mol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H(+) form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.
Resumo:
A rapid, sensitive and specific method for quantifying ciprofibrate in human plasma using bezafibrate as the internal standard (IS) is described. The sample was acidified prior extraction with formic acid (88%). The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (diethyl ether/dichloromethane 70/30 (v/v)). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS). Chromatography was performed using Genesis C18 4 mu m analytical column (4.6 x 150 mm i.d.) and a mobile phase consisting of acetonitrile/water (70/30, v/v) and 1 mM acetic acid. The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 0.1-60 mu g/mL (r > 0.99). The limit of quantification was 0.1 mu g/mL. The intra- and interday accuracy and precision values of the assay were less than 13.5%. The stability tests indicated no significant degradation. The recovery of ciprofibrate was 81.2%, 73.3% and 76.2% for the 0.3, 5.0 and 48.0 ng/mL standard concentrations, respectively. For ciprofibrate, the optimized parameters of the declustering potential, collision energy and collision exit potential were -51 V, -16 eV and -5 V, respectively. The method was also validated without the use of the internal standard. This HPLC-MS/MS procedure was used to assess the bioequivalence of two ciprofibrate 100 mg tablet formulations in healthy volunteers of both sexes. The following pharmacokinetic parameters were obtained from the ciprofibrate plasma concentration vs. time curves: AUC(last), AUC(0-168 h), C(max) and T(max). The geometric mean with corresponding 90% confidence interval (CI) for test/reference percent ratios were 93.80% (90% CI = 88.16-99.79%) for C(max), 98.31% (90% CI = 94.91-101.83%) for AUC(last) and 97.67% (90% CI = 94.45-101.01%) for AUC(0-168 h). Since the 90% Cl for AUC(last), AUC(0-168 h) and C(max) ratios were within the 80-125% interval proposed by the US FDA, it was concluded that ciprofibrate (Lipless (R) 100 mg tablet) formulation manufactured by Biolab Sanus Farmaceutica Ltda. is bioequivalent to the Oroxadin (R) (100 mg tablet) formulation for both the rate and the extent of absorption. (C) 2011 Published by Elsevier B.V.
Resumo:
Exocyclic DNA adducts produced by exogenous and endogenous compounds are emerging as potential tools to study a variety of human diseases and air pollution exposure. A highly sensitive method involving online reverse-phase high performance liquid chromatography with electrospray tandem mass spectrometry detection in the multiple reaction monitoring mode and employing stable isotope-labeled internal standards was developed for the simultaneous quantification of 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo) and 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo) in DNA. This methodology permits direct online quantification of 2`-deoxyguanosine and ca. 500 amol of adducts in 100 mu g of hydrolyzed DNA M the same analysis. Using the newly developed technique, accurate determinations of 1,N(2)-etheno-2`-deoxyguanosine and 1,N2-propano-2`-deoxyguanosine levels in DNA extracts of human cultured cells (4.01 +/- 0.32 1,N(2)-epsilon dGuo/10(8) dGuo and 3.43 +/- 0.33 1,N(2)-propanodGuo/10(8) dGuo) and rat tissue (liver, 2.47 +/- 0.61 1,N(2)-epsilon dGuo/10(8) dGuo and 4.61 +/- 0.69 1,N(2)-propanodGuo/108 dGuo; brain, 2.96 +/- 1.43,N(2)-epsilon dGuo/10(8) dGuo and 5.66 +/- 3.70 1,N(2)-propanoclGuo/10(8) dGuo; and lung, 0,87 +/- 0.34 1,N(2)-edGuo/ 10(8) dGuo and 2.25 +/- 1.72 1,N(2)-propanodGuo/10(8) dGuo) were performed. The method described herein can be used to study the biological significance of exocyclic DNA adducts through the quantification of different adducts in humans and experimental an with pathological conditions and after air pollution exposure.
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Resumo:
BACKGROUND: Chloroform, ethyl acetate and methanol extracts of a sample of red propolis from the state of Alagoas (northeast Brazil) were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. Antimicrobial and antioxidant activities were also obtained. RESULTS: The propolis sample contained low content of narigenin-8-C-hexoside, this being the first report of a C-glycoside in propolis. The main constituent found was characterized as 3,4,2`,3`-tetrahydroxychalcone. Other important constituents were the chalcone isoliquiritigenin, the isoflavans (3S)-vestitol, (3S)-7-O-methylvestitol, the pterocarpan medicarpin, the phenylpropenes trans-anethol, methyl eugenol, elimicin, methoxyeugenol and cis-asarone, and the triterpenic alcohols lupeol and alpha- and beta- amyrins. The methanol extract exhibited high antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl and beta-carotene/linoleic acid assay methods, and antimicrobial activity toward Gram-positive and Gram-negative bacteria. CONCLUSION: Structures are suggested for new substances never before seen in any kind of propolis. This is the first report of 3,4,2`,3`-tetrahydroxychalcone and a flavone C-glycoside in a propolis sample. (C) 2011 Society of Chemical Industry
Resumo:
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 mu M, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The reactions of PbR(2)(OAc)(2) (R=Me, Ph) with 3-(2-thienyl)-2-sulfanylpropenoic acid (H(2)tSpa) in methanol or ethanol afforded complexes [PbR(2)(tspa)] that electrospray ionization-mass spectrometry (ESI-MS) and IR data suggest are polymeric. X-ray studies showed that [PbPh(2)(tspa)(dmso)] center dot dmso, crystallized from a solution of [PbPh(2)(tspa)] in dmso, is dimeric, and that [HQ](2)[PbPh(2)(tspa)(2)] (Q=diisopropylamine), obtained after removal of [PbPh(2)(tspa)] from a reaction including Q, contains the monomeric anion [PbPh(2)(tSpa)(2)](2-). In the solid state the lead atoms are O,S-chelated by the tspa ligands in all these products, and in the latter two have distorted octahedral coordination environments. NMR data suggest that tspa(2-) remains coordinated to PbR(2)(2+) in solution in dmso. Neither thiamine nor thiamine diphosphate reacted with PbMe(2)(NO(3))(2) in D(2)O. Prior addition of H(2)tSpa protected LLC center dot PK1 renal proximal tubule cells against PbMe(2)(NO(3))(2); thiamine had no statistically significant effect by itself, but greatly potentiated the action of H(2)tSpa. Administration of either H(2)tspa or thiamine to male albino Sprague-Dawley rats dosed 30 min previously with PbMe(2)(NO(3))(2) was associated with reduced inhibition of delta-ALAD by the organolead compound, and with lower lead levels in kidney and brain, but joint administration of both H(2)tspa and thiamine only lowered lead concentration in the kidney.
Resumo:
In order to investigate the chemical profile of 14 specimens of Aplysina spp. marine sponges, we have developed a method based on LC-PDA-MS for the detection of bromotyrosine-derived metabolites. The method enabled the dereplication of three distinct chemotypes of bromotyrosine-derived compounds based on UV absorptions, which were further refined by electrospray ionization-mass spectrometry analysis of the brominated quasi-molecular ion clusters. This procedure led to either a single compound assignment, or a maximum of two possible isobaric compounds. The dereplication study indicated that the chemical profile of the 14 specimens of Aplysina spp. analyzed presented practically the same dibromotyrosine-derived compounds. The results obtained suggested a possible biogenetic pathway for the formation of dibromotyrosine-derived compounds of wide occurrence in Verongida sponges.
Resumo:
The iso-alpha-acids or isohumulones are the major contributors to the bitter taste of beer, and it is well-recognized that they are degraded during beer aging. In particular, the trans-isohumulones seem to be less stable than the cis-isohumulones. The major radical identified in beer is the 1-hydroxyethyl radical; however, the reactivity between this radical and the isohumulones has not been reported until now. Therefore, we studied the reactivity of isohumulones toward the 1-hydroxyethyl radical through a competitive kinetic approach. It was observed that both cis- and trans-isohumulones and dihydroisohumulones are decomposed in the presence of 1-hydroxyethyl radicals, while the reactivities are comparable. On the other hand, the tetrahydroisohumulones did not react with 1-hydroxyethyl radicals. The apparent second-order rate constants for the reactions between the 1-hydroxyethyl radical and these compounds were determined by electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization-tandem mass spectrometry [ESI(+)-MS/MS]. It follows that degradation of beer bitter acids is highly influenced by the presence of 1-hydroxyethyl radicals. The reaction products were detected by liquid chromatography electrospray ionization-ion trap-tandem mass spectrometry (LC-ESI-IT-MS/MS), and the formation of oxidized derivatives of the isohumulones was confirmed. These data help to understand the mechanism of beer degradation upon aging.
Resumo:
Amazonian oils and fats display unique triacylglycerol (TAG) profiles and, because of their economic importance as renewable raw materials and use by the cosmetic and food industries, are often subject to adulteration and forgery. Representative samples of these oils (andiroba, Brazil nut, buriti, and passion fruit) and fats (cupuacu, murumuru, and ucuba) were characterized without pre-separation or derivatization via dry (solvent-free) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Characteristic profiles of TAG were obtained for each oil and tat. Dry MALDI-TOF MS provides typification and direct and detailed information, via TAG profiles, of their variable combinations of fatty acids. A database from spectra could be developed and may be used for their fast and reliable typification, application screening, and quality control.
Resumo:
A rapid, sensitive and specific LC-MS/MS method was developed and validated for quantifying chlordesmethyldiazepam (CDDZ or delorazepam), the active metabolite of cloxazolam, in human plasma. In the analytical assay, bromazepam (internal standard) and CDDZ were extracted using a liquid-liquid extraction (diethyl-ether/hexane, 80/20, v/v) procedure. The LC-MS/MS method on a RP-C18 column had an overall run time of 5.0 min and was linear (1/x weighted) over the range 0.5-50 ng/mL (R > 0.999). The between-run precision was 8.0% (1.5 ng/mL), 7.6% (9 ng/mL), 7.4% (40 ng/mL), and 10.9% at the low limit of quantification-LLOQ (0.500 ng/mL). The between-run accuracies were 0.1, -1.5, -2.7 and 8.7% for the above mentioned concentrations, respectively. All current bioanalytical method validation requirements (FDA and ANVISA) were achieved and it was applied to the bioequivalence study (Cloxazolam-test, Eurofarma Lab. Ltda and Olcadil (R)-reference, Novartis Biociencias S/A). The relative bioavailability between both formulations was assessed by calculating individual test/reference ratios for Cmax, AUClast and AUCO-inf. The pharmacokinetic profiles indicated bioequivalence since all ratios were as proposed by FDA and ANVISA. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Direct analysis, with minimal sample pretreatment, of antidepressant drugs, fluoxetine, imipramine, desipramine, amitriptyline, and nortriptyline in biofluids was developed with a total run time of 8 min. The setup consists of two HPLC pumps, injection valve, capillary RAM-ADS-C18 pre-column and a capillary analytical C 18 column connected by means of a six-port valve in backflush mode. Detection was performed with ESI-MS/MS and only 1 mu m of sample was injected. Validation was adequately carried out using FLU-d(5) as internal standard. Calibration curves were constructed under a linear range of 1-250 ng mL(-1) in plasma, being the limit of quantification (LOQ), determined as 1 ng mL(-1), for all the analytes. With the described approach it was possible to reach a quantified mass sensitivity of 0.3 pg for each analyte (equivalent to 1.1-1.3 fmol), translating to a lower sample consumption (in the order of 103 less sample than using conventional methods). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cultures of cosmomycin D-producing Streptomyces olindensis ICB20 that were propagated for many generations underwent mutations that resulted in production of a range of related anthracyclines by the bacteria. The anthracyclines that retained the two trisaccharide chains of the parent compound were separated by HPLC. Exact mass determination of these compounds revealed that they differed from cosmomycin D (CosD) in that they contained one to three fewer oxygen atoms (loss of hydroxyl groups). Some of the anthracyclines that were separated by HPLC had the same mass. The location from which the hydroxyl groups had been lost relative to CosD (on the aglycone and/or on the sugar residues) was probed by collisionally-activated dissociation using an electrospray ionisation linear quadrupole ion trap mass spectrometer. The presence of anthracyclines with the same mass, but different structure, was confirmed using an electrospray ionisation travelling wave ion mobility mass spectrometer.
Resumo:
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for (lie ionization of the compounds. [it our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed: these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second P-O-phenol bonds, eventually leading to the formation of phenol, Phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different Structure and the products detected suggest scission of either the P-O-hydrocarbon or one of the P-O-phenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.