4 resultados para dna probe
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Despite the widespread distribution of Astyanax bockmanni in streams from Upper Parana River system in central, southeastern, and southern Brazil, just recently, it has been identified as a distinct Astyanax species. Cytogenetic studies were performed in two populations of this species, revealing conservative features. A. bockmanni shows 2n = 50 chromosomes, a karyotypic formula composed of 10 M + 12SM + 12ST + 16A and multiple Ag-NORs. Eight positive signals in subtelocentric/acrocentric chromosomes were identified by fluorescent in situ hybridization (FISH) with 18S rDNA probes. After FISH with 5S rDNA probes, four sites were detected, comprising the interstitial region of a metacentric pair and the terminal region on long arms of another metracentric pair. Little amounts of constitutive heterochromatin were observed, mainly distributed at distal region in two chromosomal pairs. Additionally, heterochromatin was also located close to the centromeres in some chromosomes. No positive signals were detected in the chromosomes of A. bockmanni by FISH with the As-51 satellite DNA probe. The studied species combines a set of characteristics previously identified in two different Astyanax groups. The chromosomal evolution in the genus Astyanax is discussed.
Resumo:
Aim The microbial profile of localized aggressive periodontitis (LAgP) has not yet been determined. Therefore, the aim of this study was to evaluate the subgingival microbial composition of LAgP. Material and Methods One hundred and twenty subjects with LAgP (n=15), generalized aggressive periodontitis (GAgP, n=25), chronic periodontitis (ChP, n=30) or periodontal health (PH, n=50) underwent clinical and microbiological assessment. Nine subgingival plaque samples were collected from each subject and analysed for their content of 38 bacterial species using checkerboard DNA-DNA hybridization. Results Red complex and some orange complex species are the most numerous and prevalent periodontal pathogens in LAgP. The proportions of Aggregatibacter actinomycetemcomitans were elevated in shallow and intermediate pockets of LAgP subjects in comparison with those with GAgP or ChP, but not in deep sites. This species also showed a negative correlation with age and with the proportions of red complex pathogens. The host-compatible Actinomyces species were reduced in LAgP. Conclusion A. actinomycetemcomitans seems to be associated with the onset of LAgP, and Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Eubacterium nodatum and Prevotella intermedia play an important role in disease progression. Successful treatment of LAgP would involve a reduction in these pathogens and an increase in the Actinomyces species.
Resumo:
We study the effect of the soft confinement by fluid lipid bilayers on the spatial organisation of DNA molecules in a DNA-zwitterionic lipid hydrated lamellar complex. The confinement is increased by dehydrating the complex in a controlled way, which leads to a decrease of the water channel thickness separating the periodically stacked bilayers. Using grazing-incidence small-angle X-ray scattering on an oriented thin film, we probe in situ as dehydration proceeds the structure of the DNA-lipid complex. A structural phase transition is evidenced, where an apparently disordered phase of DNA rods embedded within the one-dimensionally ordered lipid lamellar phase observed at high hydration is replaced by a 2D hexagonal structure of DNA molecules intercalated between the lipid bilayers. Copyright (C) EPLA, 2010
Resumo:
Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.