113 resultados para coded camera array
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In about 50% of first trimester spontaneous abortion the cause remains undetermined after standard cytogenetic investigation. We evaluated the usefulness of array-CGH in diagnosing chromosome abnormalities in products of conception from first trimester spontaneous abortions. Cell culture was carried out in short- and long-term cultures of 54 specimens and cytogenetic analysis was successful in 49 of them. Cytogenetic abnormalities (numerical and structural) were detected in 22 (44.89%) specimens. Subsequent, array-CGH based on large insert clones spaced at ~1 Mb intervals over the whole genome was used in 17 cases with normal G-banding karyotype. This revealed chromosome aneuplodies in three additional cases, giving a final total of 51% cases in which an abnormal karyotype was detected. In keeping with other recently published works, this study shows that array-CGH detects abnormalities in a further ~10% of spontaneous abortion specimens considered to be normal using standard cytogenetic methods. As such, array-CGH technique may present a suitable complementary test to cytogenetic analysis in cases with a normal karyotype.
Resumo:
We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979]
Resumo:
We report on some unusual behavior of the measured current-voltage characteristics (CVC) in artificially prepared two-dimensional unshunted array of overdamped Nb-AlO(x)-Nb Josephson junctions. The obtained nonlinear CVC are found to exhibit a pronounced (and practically temperature independent) crossover at some current I(cr) = (1/2 beta(C)-1)I(C) from a resistance R dominated state with V(R)=R root I(2)-I(C)(2) below I(cr) to a capacitance C dominated state with V(C) = root(h) over bar /4eC root I-I(C) above I(cr). The origin of the observed behavior is discussed within a single-plaquette approximation assuming the conventional resistively shunted junction model with a finite capacitance and the Ambegaokar-Baratoff relation for the critical current of the single junction. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3407566]
Resumo:
Catalytic ozonation has been recognized in the scientific community as an efficient technique, reaching elevated rates of recalcitrant organic material mineralization, even at the presence of scavenger species of hydroxyl free radicals. This study presents the most significant factors involving the leachate treatment stabilized by the municipal landfill of the city of Guaratingueta, State of Sao Paulo, Brazil, by using a catalytic ozonation activated by metallic ions Fe(3+), Zn(2+), Mn(2+), Ni(2+) and Cr(3+). The Taguchi L(16) orthogonal array and its associated statistical methods were also used in this study. Among the researched ions, the most notable catalysis was obtained with ferric ion, statistically significant in the reduction of COD with a confidence level of 99.5%.
Resumo:
This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.
Resumo:
An investigation of nucleate boiling on a vertical array of horizontal plain tubes is presented in this paper. Experiments were performed with refrigerant RI 23 at reduced pressures varying from 0.022 to 0.64, tube pitch to diameter ratios of 1.32, 1.53 and 2.00, and heat fluxes from 0.5 to 40 kW/m(2). Brass tubes with external diameters of 19.05 mm and average roughness of 0.12 mu m were used in the experiments. The effect of the tube spacing on the local heat transfer coefficient along the tube array was negligible within the present range of experimental conditions. For partial nucleate boiling, characterized by low heat fluxes, and low reduced pressures, the tube positioning shows a remarkable effect on the heat transfer coefficient. Based on these data, a general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array of horizontal tubes under flooded conditions was proposed. According to this correlation, the ratio between the heat transfer coefficients of a given tube and the lowest tube in the array depends only on the tube row number, the reduced pressure and the heat flux. By using the proposed correlation, most of the experimental heat transfer coefficients obtained in the present study were predicted within +/- 15%. The new correlation compares reasonably well with independent data from the literature. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We present a novel array RLS algorithm with forgetting factor that circumvents the problem of fading regularization, inherent to the standard exponentially-weighted RLS, by allowing for time-varying regularization matrices with generic structure. Simulations in finite precision show the algorithm`s superiority as compared to alternative algorithms in the context of adaptive beamforming.
Resumo:
The simultaneous use of different sensors technologies is an efficient method to increase the performance of chemical sensors systems. Among the available technologies, mass and capacitance transducers are particularly interesting because they can take advantage also from non-conductive sensing layers, such as most of the more interesting molecular recognition systems. In this paper, an array of quartz microbalance sensors is complemented by an array of capacitors obtained from a commercial biometrics fingerprints detector. The two sets of transducers, properly functionalized by sensitive molecular and polymeric films, are utilized for the estimation of adulteration in gasolines, and in particular to quantify the content of ethanol in gasolines, an application of importance for Brazilian market. Results indicate that the hybrid system outperforms the individual sensor arrays even if the quantification of ethanol in gasoline, due to the variability of gasolines formulation, is affected by a barely acceptable error. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sound source localization (SSL) is an essential task in many applications involving speech capture and enhancement. As such, speaker localization with microphone arrays has received significant research attention. Nevertheless, existing SSL algorithms for small arrays still have two significant limitations: lack of range resolution, and accuracy degradation with increasing reverberation. The latter is natural and expected, given that strong reflections can have amplitudes similar to that of the direct signal, but different directions of arrival. Therefore, correctly modeling the room and compensating for the reflections should reduce the degradation due to reverberation. In this paper, we show a stronger result. If modeled correctly, early reflections can be used to provide more information about the source location than would have been available in an anechoic scenario. The modeling not only compensates for the reverberation, but also significantly increases resolution for range and elevation. Thus, we show that under certain conditions and limitations, reverberation can be used to improve SSL performance. Prior attempts to compensate for reverberation tried to model the room impulse response (RIR). However, RIRs change quickly with speaker position, and are nearly impossible to track accurately. Instead, we build a 3-D model of the room, which we use to predict early reflections, which are then incorporated into the SSL estimation. Simulation results with real and synthetic data show that even a simplistic room model is sufficient to produce significant improvements in range and elevation estimation, tasks which would be very difficult when relying only on direct path signal components.
Resumo:
This study aimed to evaluate the neural response in double-array cochlear implant as well as to describe the refractory recovery and the spread of excitation functions. In a prospective study 11 patients were implanted with the double-array cochlear implant. Neural response telemetry (NRT) was performed intra-operatively. NRT threshold could be registered in 6 of the 11 patients, at least in one electrode. The remaining five patients did not show measurable neural response intra-operatively. It was noted that although recovery and spread of excitation functions could be recorded in all the tested electrodes with measurable neural responses, the responses were shown to be different from the usual register in patients with other etiologies.
Resumo:
We present the first comprehensive study, to our knowledge, on genomic chromosomal analysis in syndromic craniosynostosis. In total, 45 patients with craniosynostotic disorders were screened with a variety of methods including conventional karyotype, microsatellite segregation analysis, subtelomeric multiplex ligation-dependent probe amplification) and whole-genome array-based comparative genome hybridisation. Causative abnormalities were present in 42.2% (19/45) of the samples, and 27.8% (10/36) of the patients with normal conventional karyotype carried submicroscopic imbalances. Our results include a wide variety of imbalances and point to novel chromosomal regions associated with craniosynostosis. The high incidence of pure duplications or trisomies suggests that these are important mechanisms in craniosynostosis, particularly in cases involving the metopic suture.
Resumo:
We present results of a sensitive Chandra X-ray observation and Spitzer mid-infrared (mid-IR) observations of the IR cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR, which contains at least nine IR sources within a 40 `` x 40 `` region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H(2)O masers. We use Spitzer Infrared Array Camera (IRAC) images to aid in X-ray source identification and to determine young stellar object (YSO) classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2 `` north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.
Resumo:
Activities involving fauna monitoring are usually limited by the lack of resources; therefore, the choice of a proper and efficient methodology is fundamental to maximize the cost-benefit ratio. Both direct and indirect methods can be used to survey mammals, but the latter are preferred due to the difficulty to come in sight of and/or to capture the individuals, besides being cheaper. We compared the performance of two methods to survey medium and large-sized mammal: track plot recording and camera trapping, and their costs were assessed. At Jatai Ecological Station (S21 degrees 31`15 ``- W47 degrees 34`42 ``-Brazil) we installed ten camera traps along a dirt road directly in front of ten track plots, and monitored them for 10 days. We cleaned the plots, adjusted the cameras, and noted down the recorded species daily. Records taken by both methods showed they sample the local richness in different ways (Wilcoxon, T=231; p;;0.01). The track plot method performed better on registering individuals whereas camera trapping provided records which permitted more accurate species identification. The type of infra-red sensor camera used showed a strong bias towards individual body mass (R(2)=0.70; p=0.017), and the variable expenses of this method in a 10-day survey were estimated about 2.04 times higher compared to track plot method; however, in a long run camera trapping becomes cheaper than track plot recording. Concluding, track plot recording is good enough for quick surveys under a limited budget, and camera trapping is best for precise species identification and the investigation of species details, performing better for large animals. When used together, these methods can be complementary.
Resumo:
The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions. (C) 2010 Elsevier B.V All rights reserved.